

FUTURION

FUTURCAST

STAND ALONE MODULE

Table of Contents

1	Overview of the Forecast Methods	3
2	Launching the FUTURCAST Stand Alone module	6
3	Preparing the Data.....	8
3.1	WFCAST.xlsm: An Overview	10
3.2	Inputting and Editing Historical Data.....	12
3.2.1	Entering a Set of Data Values	12
3.2.2	Editing Historical Values	13
3.2.3	Adding Historical Values	13
3.2.4	Deleting Historical Values	14
3.3	Creating Forecasting Files	15
4	Forecasting Methods.....	17
4.1	Forecasting with SINGLE (Single Exponential Smoothing).....	17
4.2	Forecasting with CMFS (Carbone-Makridakis Forecasting System).....	19
4.3	Forecasting with Holt (CMFS: Short-Term Only).....	22
4.4	Forecasting with Linear (CMFS: Long Term Only)	23
4.5	Forecasting with Exponent (Exponential Growth/Decline models)	24
4.6	Seasonality Analysis Using CLASSD (The Classical Decomposition Method).....	26
4.7	Forecasting Method Selection	28
5	Glossary and Terms.....	29
6	Accessing, Modifying and Exporting the Batch Forecast.....	31
6.1	Exporting the Forecast to Excel.....	33
6.2	Graphing Options.....	35
6.3	Save 'As' or Saving a Forecast Scenario.....	36
6.4	Accessing, Retrieving and Managing Scenarios	37
6.5	AutoSum.....	38
7	Using the Fill Feature	39
7.1	Types of Fill.....	39
7.1.1	Standard Functions.....	39
7.1.2	Advanced Functions.....	39
7.1.3	Shift Function	40

7.1.4	Statistical Functions	40
7.2	Adjusting the Forecast using the Fill feature.....	40
8	Bass Diffusion Curves (overview)	42
8.1	Bass Diffusion Formula	42
8.2	Bass Diffusion Application.....	43
8.2.1	Fast up-take.....	44
8.2.2	S-curve up-take.....	44
8.2.3	Exponential up-take.....	45
8.2.4	Negative up-take or Erosion.....	45
8.2.5	New Product or Line Extension Forecast by Analogy.....	46
9	Creating a Statistical Forecast.....	49
10	Evaluating a Statistical Forecast.....	53
11	Creating a Top-Down Forecast.....	54
12	Summary of Functionalities and Capabilities of FUTURCAST Stand Alone in Comparison with the FUTURCAST System platforms	56

1 Overview of the Forecast Methods

Can the future be predicted? Is it not futile to even try to forecast when we all know that the future is not deterministic? Why bother when so many forecasts go wrong? Is the cost of getting the forecasts worth the trouble? Is there anything more to forecasting than superstitious beliefs or fortune telling?

During the last forty years, forecasting has grown to become a well-respected managerial function. A solid body of scientific knowledge is now available to help business forecasters accurately and efficiently predict the future without relying on primitive and simplistic methods. It is our purpose to present the state of the art and science in the field of forecasting, its advantages and disadvantages, the benefits which can be derived while avoiding the problems and limitations of different forecasting methods.

Forecasting is needed for all types of planning and future oriented decision making (e.g. strategy). As such, it is an indispensable activity. The question is not whether to forecast, but what is the best way of obtaining forecasts about the future. In other words, planners and decision makers do not have a choice: they must forecast. The choice is to do it intuitively, or through a systematic formal procedure built upon knowledge, experience, and the most advanced objective methods available from the field of forecasting. A considerable amount of empirical findings and experimental work have shown that intuitive, ad hoc forecasting is less accurate than formal predictions based on data driven statistical forecasting methods when data is available. Furthermore, the cost of quantitative forecasting is less than people making similar predictions. In addition, quantitative forecasts can be obtained more quickly and consistently, which is not the case of judgmental forecasts.

Empirical work carried out since the early 1980s have greatly enriched our knowledge about forecasting, its advantages, and disadvantages. By studying and analyzing forecast made in the past, we are well aware that errors, sometimes large, are possible, and that some events that were predicted did not occur while others that were not predicted did occur. We now understand which method works and under what circumstances.

No doubt bad forecasts can and will be made. However, we cannot, judge the accuracy and usefulness of forecasting by a few incidents of bad or good forecasts. Instead, forecasting functions need to be evaluated from all aspects. Through empirical studies, it had been found that statistical forecasting methods improve forecasting accuracy, reduce the cost of predictions, and help us to more realistically assess future uncertainty. Quantitative forecasting provides us with objective information based on past data/information. The greatest contribution of quantitative forecasting methods is their ability to determine what data should be used to identify on these data, past patterns and/or relationships that are then extrapolated to predict the future.

Among those patterns, seasonality and trend are the most important. The seasonality of sales provides essential information for planning purposes; budgeting, production scheduling, inventories, cost management, buying of raw and other material, scheduling vacation and maintenance times, updating year end forecasts, and many other activities heavily depend on the seasonality of demand. These activities are greatly improved/facilitated when seasonality is known. Finding seasonality is a

straightforward task which, with the aid of a computer, can be accomplished in less than a second. There is no reason not to estimate seasonality and to use it to improve planning and future oriented decision making. The benefits can be substantial.

What happens when seasonality changes? The answer is simple: the forecasts will be wrong. However, this does not often occur. Although there might be some changes in inherent seasonality from one year to another, the magnitude is small. Furthermore, such changes do not usually follow any regular pattern. Forecasting is based on the assumption that past patterns can be wrong. On the other hand, by having analyzed hundreds of thousands of past situations involving pattern changes, we know that changes in seasonality (and in particular big ones) do not often take place. Even if seasonal patterns do change, they change gradually or if they change, inherent seasonality can be estimated to reflect the most recent data.

A critical aspect of forecasting is to reduce the possibility of being caught by surprise. This requires analyzing and better understanding the past. In some cases, we might find out that forecasting is not possible (e.g. predicting the stock market), that no patterns can be identified in order to forecast. This is a part of forecasting. Knowing when we cannot forecast is as important since it helps us to better assess the future uncertainty and improve the planning process.

Looking at a series of values is similar to observing fluctuations around the trend (either exponential or linear). It is interesting to see how trends have been constant over time. This can again provide an indication on how the trend(s) in sales may change in the future. A change is possible and can occur because of a number of reasons. However, the consistency in the growth of sales over a long time period must be taken into account. Unless additional information is available, planners can assume that the established long-term trends will continue in the future.

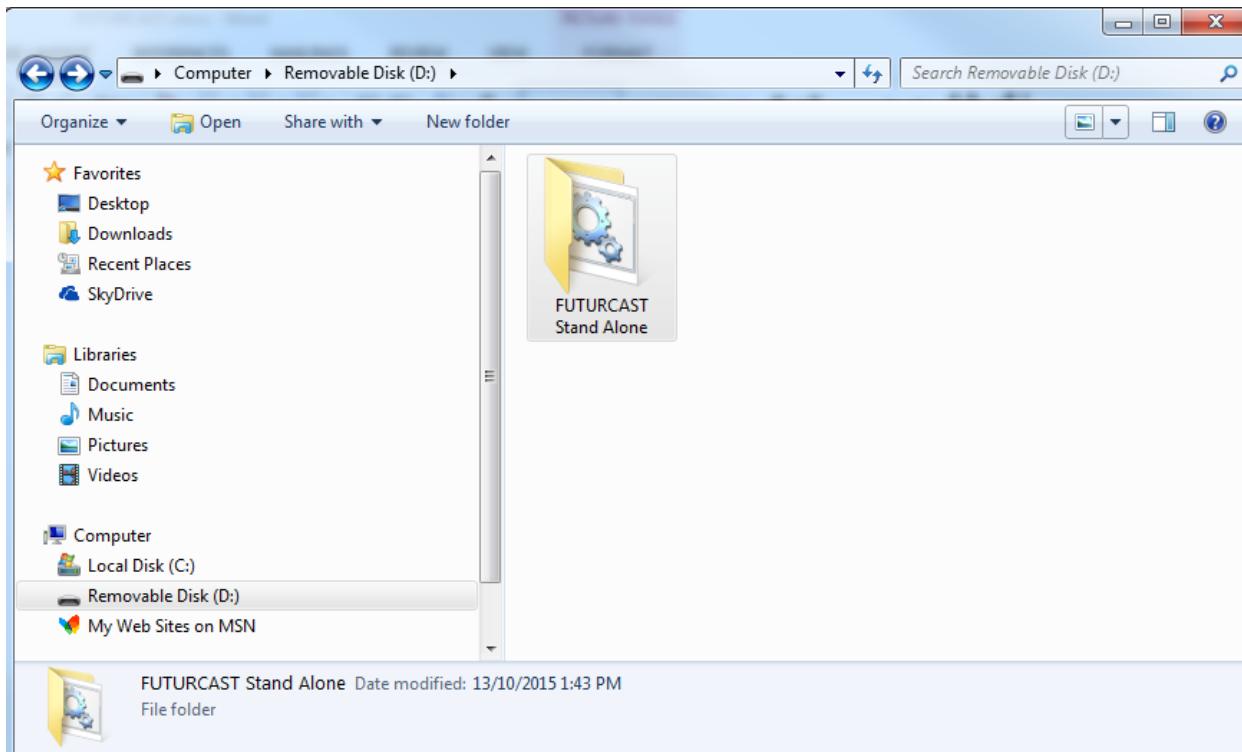
There are many forecasting methods which look at the past history of a single series (e.g. sales) to discover patterns (e.g. seasonality, trend) which they subsequently extrapolate in order to forecast. Again, their purpose is to discover patterns in the retained historical data, then extrapolate them to predict the future. The methods we have found to be the most reliable have been selected for use are described in Section 5 of this handbook.

Most extrapolative forecasting methods assume that history repeats itself and that no outside factors affect the data to be forecasted. This obviously is not true. In fact, the effect of outside factors may be either temporary or permanent. For example, if a promotion is offered, sales will first increase, then decrease to finally return to the experienced trend. The effect is then temporary. New product launches, product lifecycle events, etc. affect data in more permanent ways. It is therefore essential to identify and quantify short and long term effects of various factors that have influenced sales in the past and to incorporate these effects if similar actions are contemplated in the future. This is the role of future assumptions. For instance, it is important to know for how many months and by how much in each month a promotion will change the sales figures from what would be forecasted if the product would not be promoted. To attempt to identify and extrapolate basic patterns found in historical sales data without accounting for the short and long term effects of marketing and product lifecycle events is a futile exercise which will only result in unreliable forecasts. In order to identify the true underlying patterns, the critical task of filtering data (auto removal and substitution of outliers) is performed before applying a forecasting method

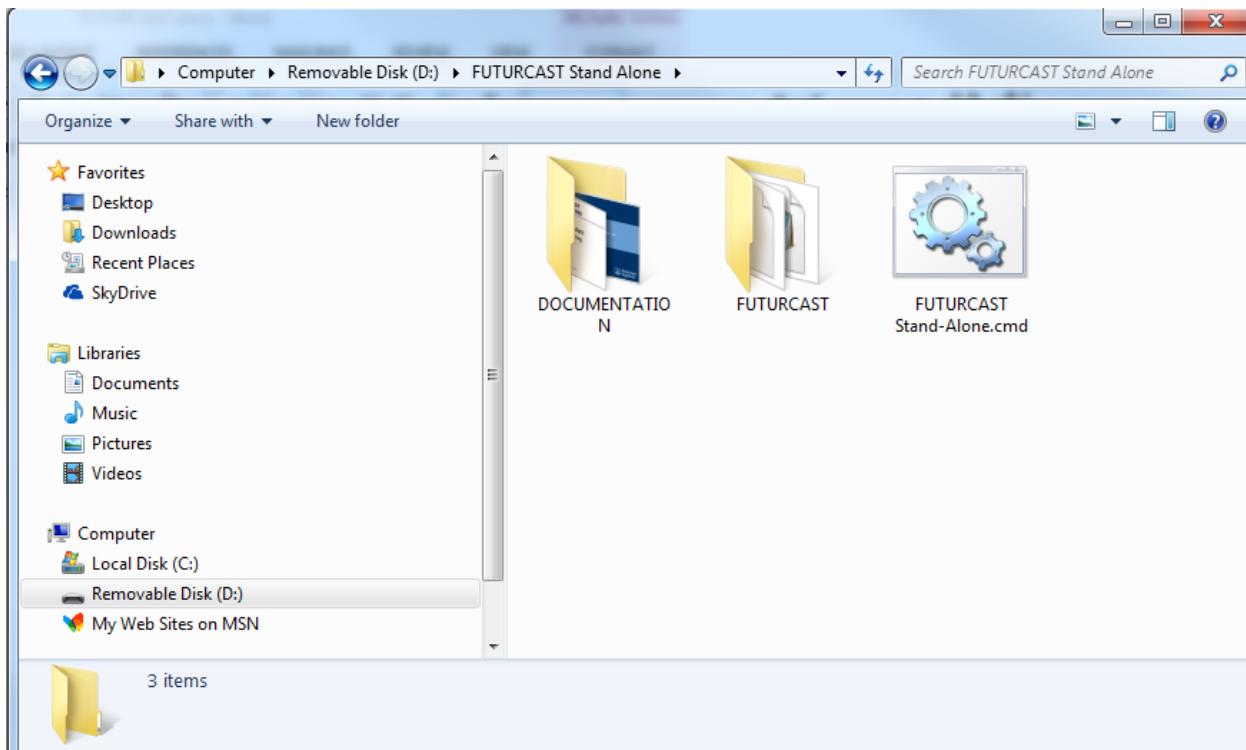
The **FUTURCAST Stand Alone** module does not cover assumption/event-based forecasting, total market forecasting, replenishment forecasting nor does it cover population and patient-based approaches for new product forecasting.

FUTURCAST Stand Alone is not a full blown forecasting system. The module does not rely on MS SQL or Oracle relational database. It does not offer a data management tool to restage, discontinue, classify in accordance to a product's ABC analysis or manage prices. Variance and accuracy analysis are not integrated. It does not provide a business intelligence application to summarize and analyze data. It is a small part of the **FUTURCAST** system. **A full comparison of the functionalities and capabilities of FUTURCAST Stand Alone versus the three main FUTURCAST system platforms is provided in the last section of this document (section 12)**

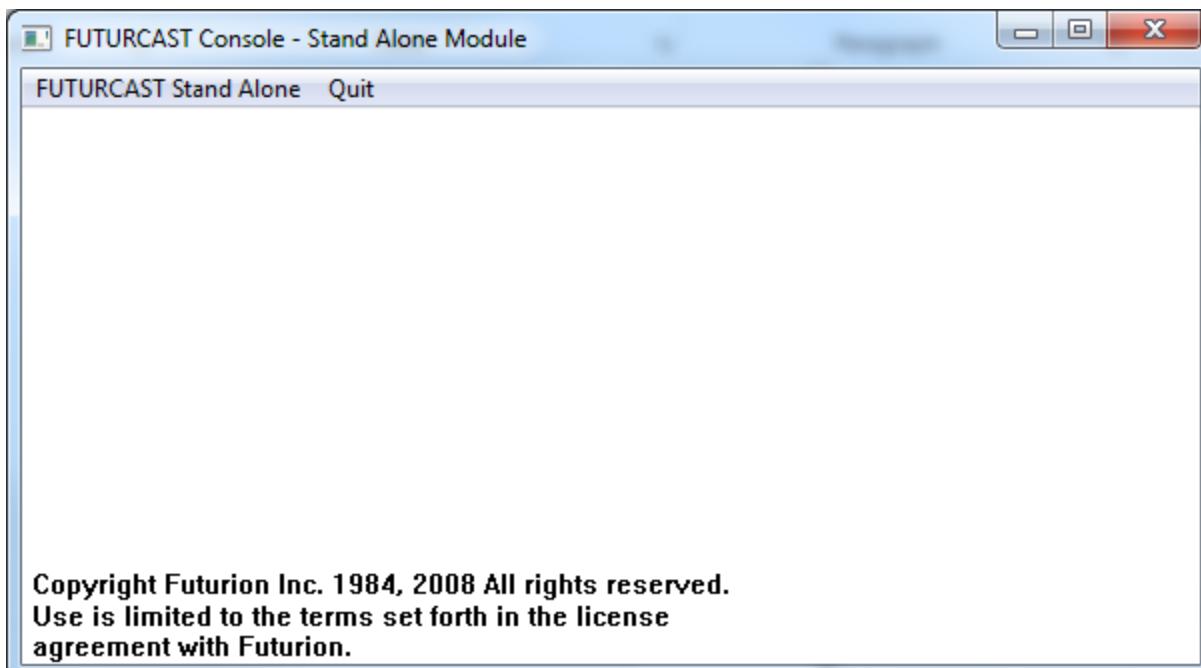
In summary, what it offers is the following:


- The ability to forecast up to 30 time series with one click of the mouse in an auto-pilot mode.
- Access to the **FUTURCAST** Expert forecasting engine. The forecasting engine is the motor of a forecasting system. Its main purpose is to automatically analyze data in order to generate a reference or benchmark forecast that can be thereafter adjusted.

The basic approach behind the **FUTURCAST** Expert system is to replicate how a person with great knowledge and skills in forecasting would go about making decisions on the approach to use. For example, an expert in statistical forecasting will first look at data after having filtered outliers and substituted values. The experts will then identify the date of the first observation to be used by isolating changing trends, focusing thereafter on choosing among a small set of methods the most appropriate one to apply. This selection will not be based on the method that best fit the data, but rather on the observed pattern; whether the trend is increasing, decreasing or leveling off. This process corresponds to the automatic **FUTURCAST** Expert System which has been refined over the last 20 years and is embedded in **FUTURCAST Stand Alone**.

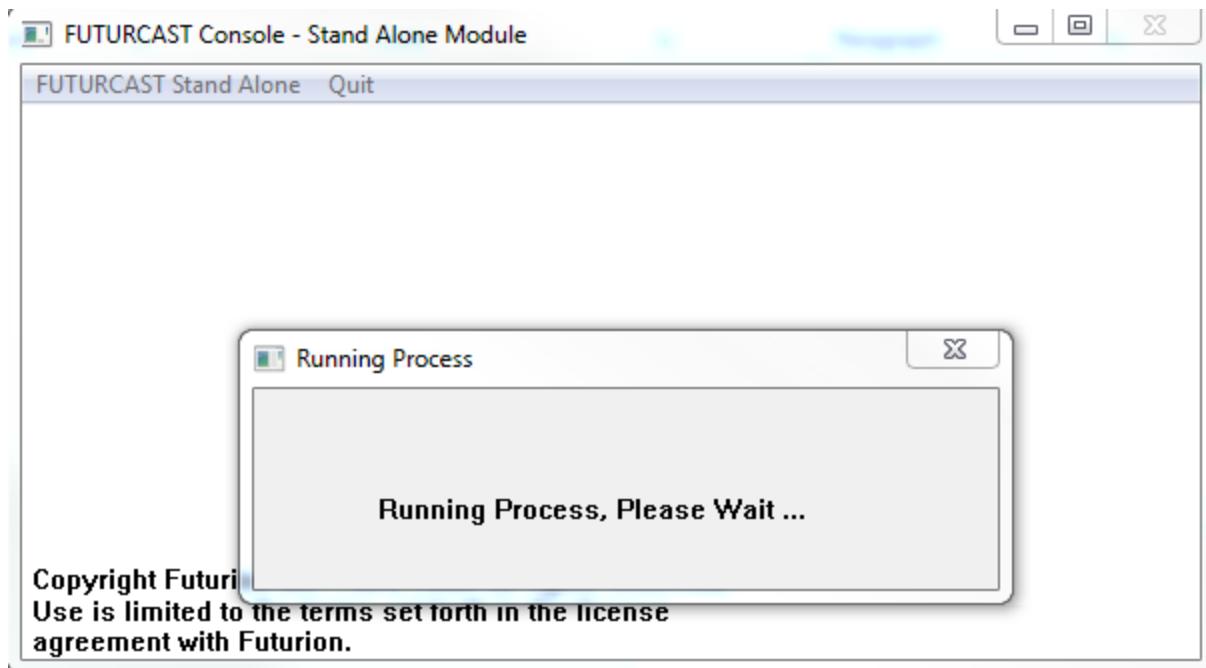

- Aggregation to two levels
- Forecast modification at the lowest or at a higher level with proration to the lowest level
- Straightforward and advanced forecast modification formulas such as the Bass diffusion model.
- Computation of best-fit model (solver principle) for advanced forecast modification formulas.
- Ability to override the expert system selection and to apply a different forecast methodology, with or without seasonality given a selected first and last observation.
- Ability to evaluate the accuracy of a forecast obtained using a subset of the historical data.

2 Launching the FUTURCAST Stand Alone module


Insert the USB key containing the **FUTURCAST Stand Alone** module into your computer/laptop and access the following folder off the correct drive (Removable Disk drive): **FUTURCAST Stand Alone**.

Once the **FUTURCAST Stand Alone** folder has been located double click on to the **FUTURCAST Stand Alone** icon to access the console of **FUTURCAST Stand Alone Module**:

The Console for the **FUTURCAST Stand Alone** Module will automatically launch in a new window


3 Preparing the Data

From the menu bar, select **FUTURCAST Stand Alone** to access the following drop window to either prepare or store the desired data you would like to forecast or run Forecasting Book application or backup and restore your data.

Click on **Prepare Data**

The following window will appear as the application processes an associated Excel file to enter/modify your desired data sets to forecast.

An Excel Spreadsheet will then be launched

Note:

You must enable the Content in order for the embedded Macro to run properly. To do so you need to click on Enable Content.

	A	B	C	D	E	F	G	H	I	J	K	L	M
1			StartYear	2004									
2	Create Forecasting Files												
4	Series Description	Level1	Level2	Jan-2004	Feb-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004	Oct-2004
5	MAF125	MAFEKIN	CORP										
6	MAF125+	MAFEKIN	CORP										
7	MAF175	MAFEKIN	CORP										
8	NAI25	NAICAN	CORP		7742	6182	6263	7148	6805	6643	6116	5908	5741
9	NAI50	NAICAN	CORP										
10	NAI75	NAICAN	CORP										
11	NAI75+	NAICAN	CORP										
12	SEASONAL	SEASON	CORP										
13	VALT100	VALTA	CORP										
14	VALT50	VALTA	CORP										
15	VALT80	VALTA	CORP										
16	Val100ref	VALTA	CORP										

3.1 WFCAST.xlsm: An Overview

The following **WFCAST** Excel window will appear. In this file you can add, modify, and remove the desired data sets of monthly values you wish to forecast via the **FUTURCAST Stand Alone** module.

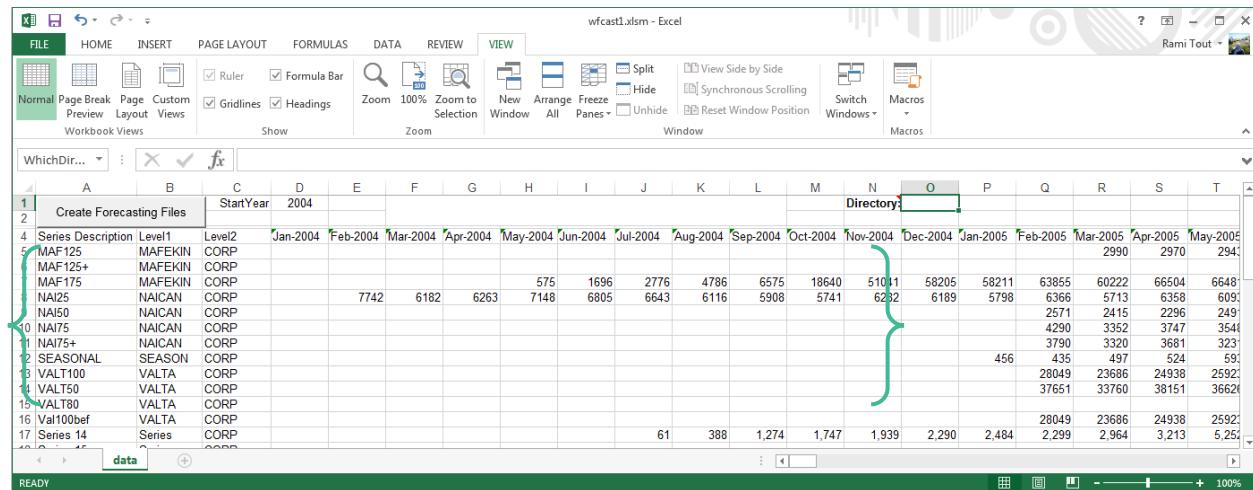
- The following spreadsheet displays by default a historical horizon spanning from January 2004 up to March 2025.
- Monthly values can easily be entered, modified, added; and removed on this data storage spreadsheet.
- The total number of data series may not exceed 30.

The screenshot shows an Excel spreadsheet titled 'wfcast1.xlsm - Excel'. The 'VIEW' tab is selected. A callout box with a green arrow points to the 'Create Forecasting Files' button in the top-left corner of the data area. Another callout box with a green arrow points to the 'Series Description/ Level1 & Level2' section, which contains instructions to add product names and grouping levels. A third callout box with a green arrow points to the 'Historical & forecasted months' section, which contains instructions to add monthly values. The data area contains a table with columns for Series Description, Level1, Level2, and dates from Oct-2004 to May-2005, with various numerical values filled in.

Create Forecasting Files: Once all the desired data is entered click on this tab for the FUTURCAST Stand Alone Module to recognize the data you entered in Excel.

Series Description/ Level1 & Level2:
Add product names /Item names of the series of the data you wish to forecast.
In addition you can enter two grouping levels

Historical & forecasted months: Add monthly values in terms of units/ currency/ script/ etc. to each of the cells.

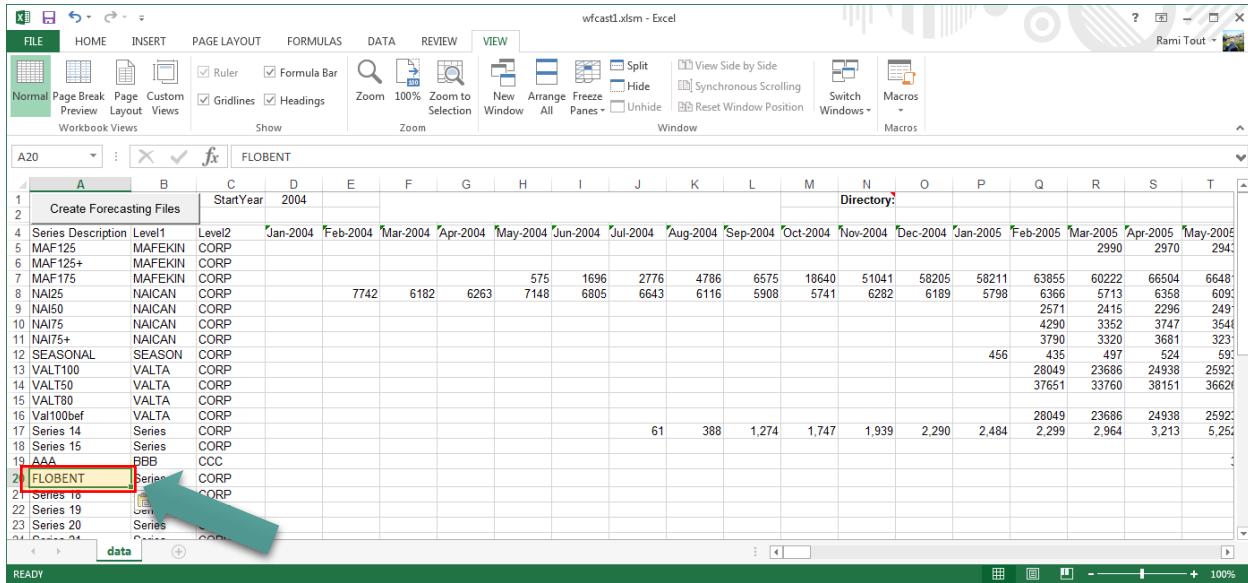

Note:

Create Forecasting Files: This function must be executed before exiting the WFCAST spreadsheet and whenever changes are made to the stored data.

The following series of data have been inputted for example purposes:

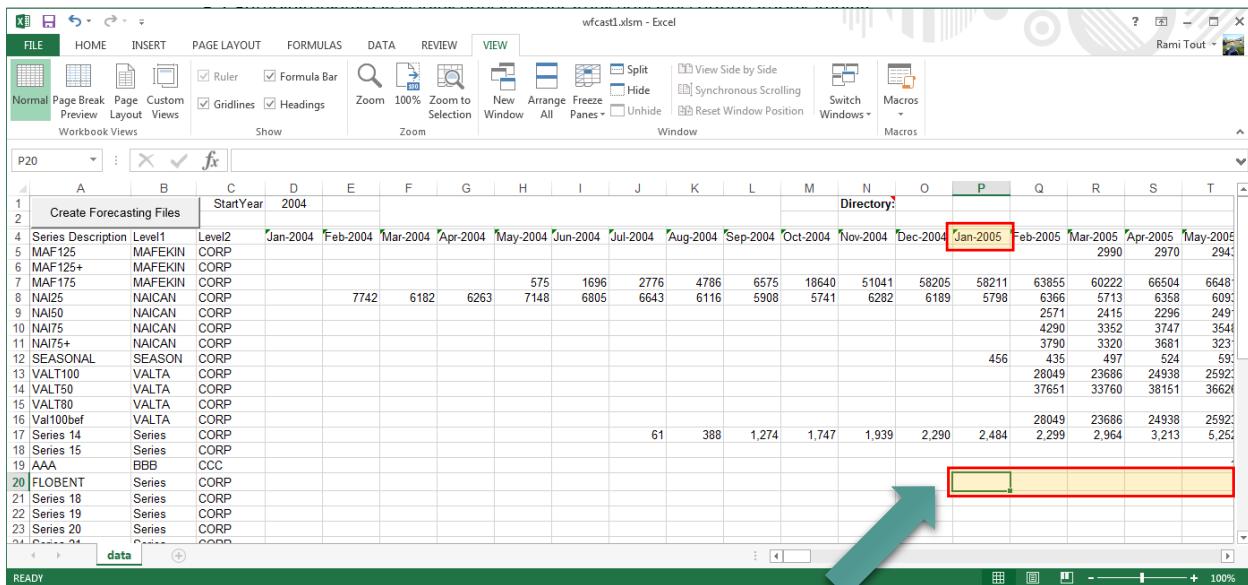
Series Description:

MAF 125	NAI50	VALT100
MAF 125+	NAI75	VALT50
MAF 175	NAI75+	VALT80
NAI25	SEASONAL	

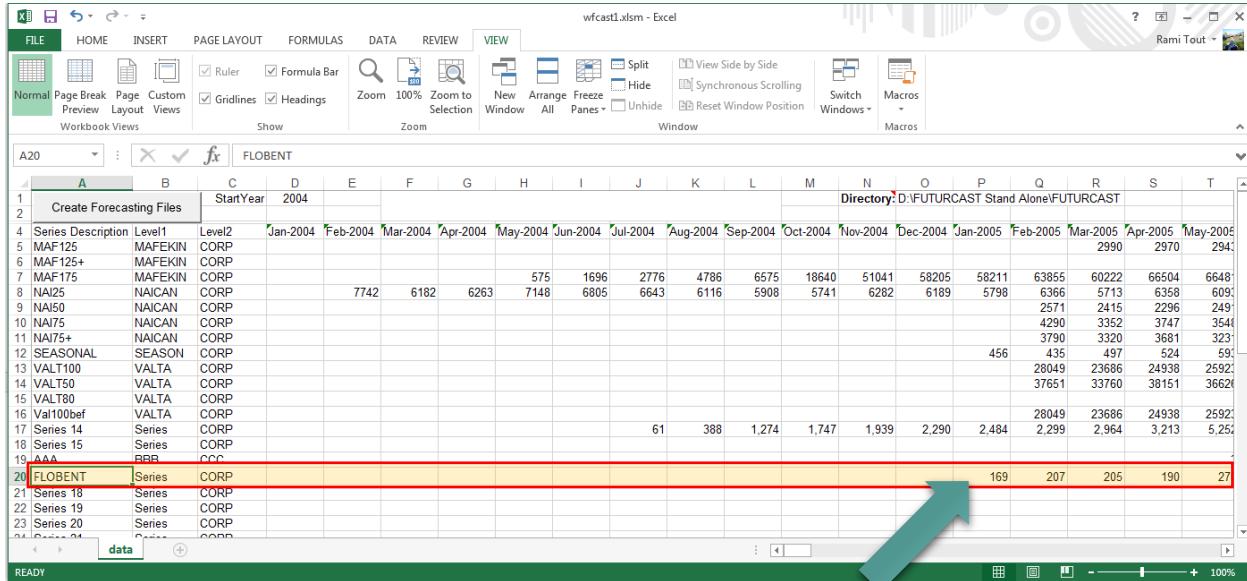

Create Forecasting Files		StartYear	2004																					
2		1	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
4		Series Description	Level1	Level2	Jan-2004	Feb-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004	Oct-2004	Nov-2004	Dec-2004	Jan-2005	Feb-2005	Mar-2005	Apr-2005	May-2005			
5		MAF125	MAFEKIN	CORP																			2990	2970
6		MAF125+	MAFEKIN	CORP																				294
7		MAF175	MAFEKIN	CORP																				
8		NAI25	NAICAN	CORP																				
9		NAI50	NAICAN	CORP																				
10		NAI75	NAICAN	CORP																				
11		NAI75+	NAICAN	CORP																				
12		SEASONAL	SEASON	CORP																				
13		VALT100	VALTA	CORP																				
14		VALT50	VALTA	CORP																				
15		VALT80	VALTA	CORP																				
16		Val100bef	VALTA	CORP																				
17		Series 14	Series	CORP																				
18																								
19																								
20																								
21																								
22																								
23																								
24																								
25																								

3.2 Inputting and Editing Historical Data

3.2.1 Entering a Set of Data Values


To enter a new series of data on which you wish to run different forecasting methods;

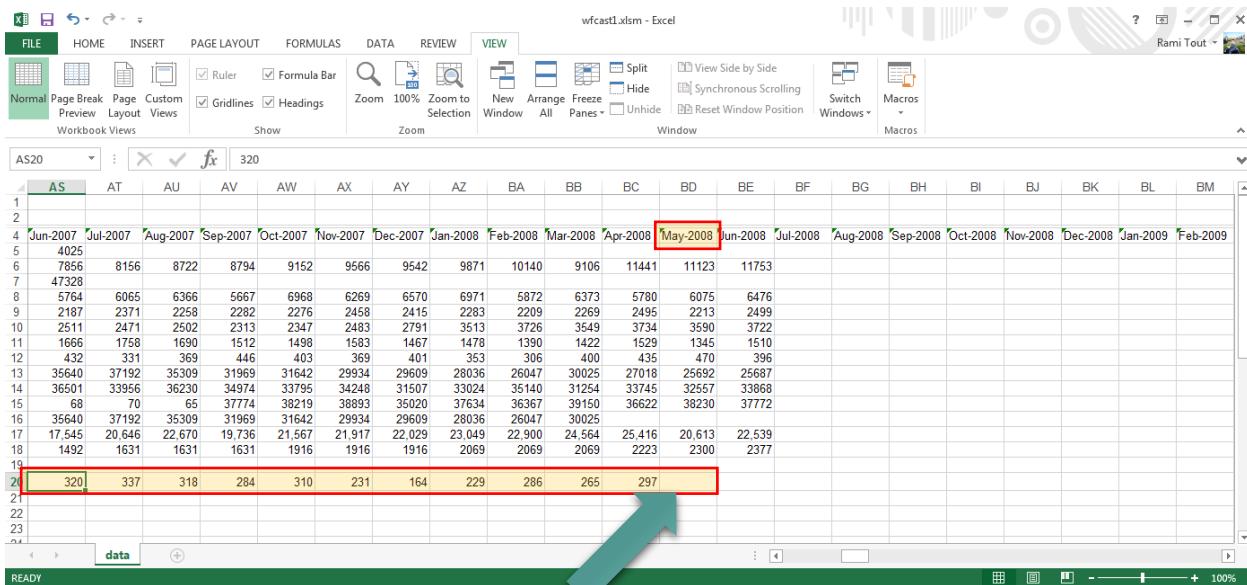
- Enter in the next available series number, the series description, for example: FLOBENT.


	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
1	Create Forecasting Files		StartYear	2004																
2																				
3	Series Description	Level1	Level2	Jan-2004	Feb-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004	Oct-2004	Nov-2004	Dec-2004	Jan-2005	Feb-2005	Mar-2005	Apr-2005	May-2005
4	5	MAF125	MAFEKIN	CORP																
5	6	MAF125+	MAFEKIN	CORP																
6	7	MAF175	MAFEKIN	CORP																
7	8	NAI25	NAICAN	CORP		7742	6182	6263	7148	6805	6643	6116	5908	5741	6189	5798	6366	5713	6358	6091
8	9	NAI50	NAICAN	CORP													2571	2415	2296	2491
9	10	NAI75	NAICAN	CORP													4290	3352	3747	3541
10	11	NAI75+	NAICAN	CORP													3790	3320	3681	3231
11	12	SEASONAL	SEASON	CORP													456	435	497	524
12	13	VALT100	VALTA	CORP													28049	23686	24938	25921
13	14	VALT50	VALTA	CORP													37651	33760	38151	36621
14	15	VALT80	VALTA	CORP																
15	16	Val100bef	VALTA	CORP																
16	17	Series 14	Series	CORP																
17	18	Series 15	Series	CORP																
18	19	AAA	BBB	CCC																
19	20	FLOBENT	Series	CORP																
20	21	Series 18	Series	CORP																
21	22	Series 19	Series	CORP																
22	23	Series 20	Series	CORP																
23																				

- Go to the corresponding cell of the month and year of the first historical value of the FLOBENT series to be entered on that row (i.e. January 2005 for the FLOBENT data series).

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
1	Create Forecasting Files		StartYear	2004																
2																				
3	Series Description	Level1	Level2	Jan-2004	Feb-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004	Oct-2004	Nov-2004	Dec-2004	Jan-2005	Feb-2005	Mar-2005	Apr-2005	May-2005
4	5	MAF125	MAFEKIN	CORP																
5	6	MAF125+	MAFEKIN	CORP																
6	7	MAF175	MAFEKIN	CORP																
7	8	NAI25	NAICAN	CORP		7742	6182	6263	7148	6805	6643	6116	5908	5741	6189	5798	6366	5713	6358	6091
8	9	NAI50	NAICAN	CORP													2571	2415	2296	2491
9	10	NAI75	NAICAN	CORP													4290	3352	3747	3541
10	11	NAI75+	NAICAN	CORP													3790	3320	3681	3231
11	12	SEASONAL	SEASON	CORP													456	435	497	524
12	13	VALT100	VALTA	CORP													28049	23686	24938	25921
13	14	VALT50	VALTA	CORP													37651	33760	38151	36621
14	15	VALT80	VALTA	CORP																
15	16	Val100bef	VALTA	CORP																
16	17	Series 14	Series	CORP																
17	18	Series 15	Series	CORP																
18	19	AAA	BBB	CCC																
19	20	FLOBENT	Series	CORP																
20	21	Series 18	Series	CORP																
21	22	Series 19	Series	CORP																
22	23	Series 20	Series	CORP																
23																				

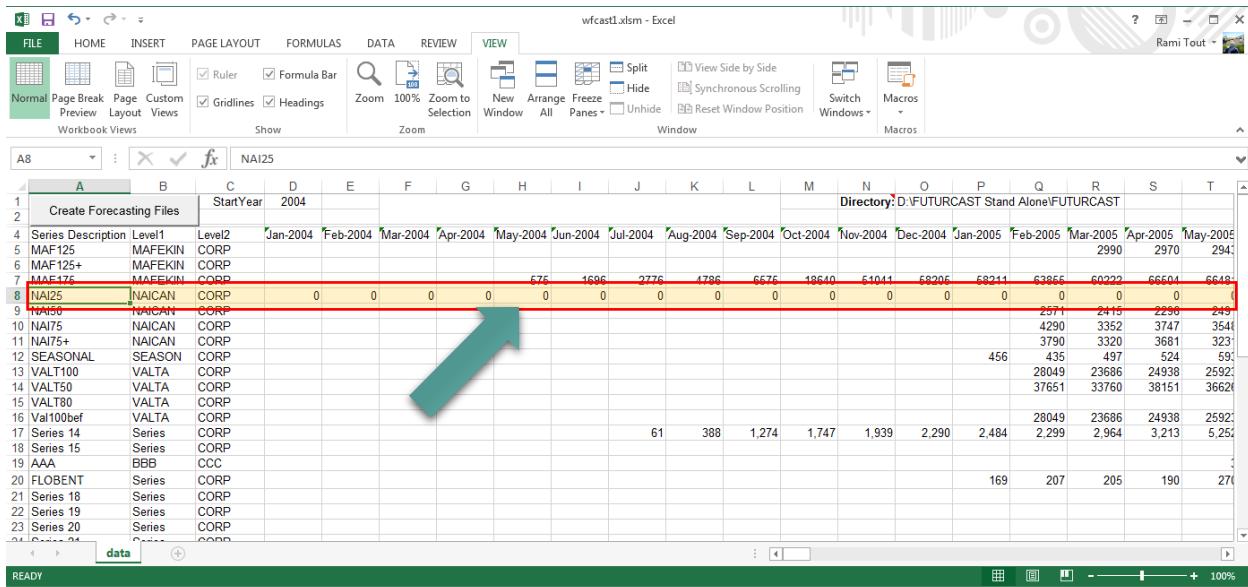
- Type in the January historical value and the subsequent monthly values in the appropriate monthly cell on that row (copy/paste may be used for this purpose).


Screenshot of Microsoft Excel showing a data table for FLOBENT. The table has columns for StartYear (2004) and various months from Jan-2004 to May-2005. A red arrow points to the cell A20, which contains 'FLOBENT' and is highlighted in yellow. The cell A20 is part of a row that includes 'Series' and 'CORP'.

3.2.2 Editing Historical Values

- Editing historical values is as simple as going to the desired cell and re-typing a value.

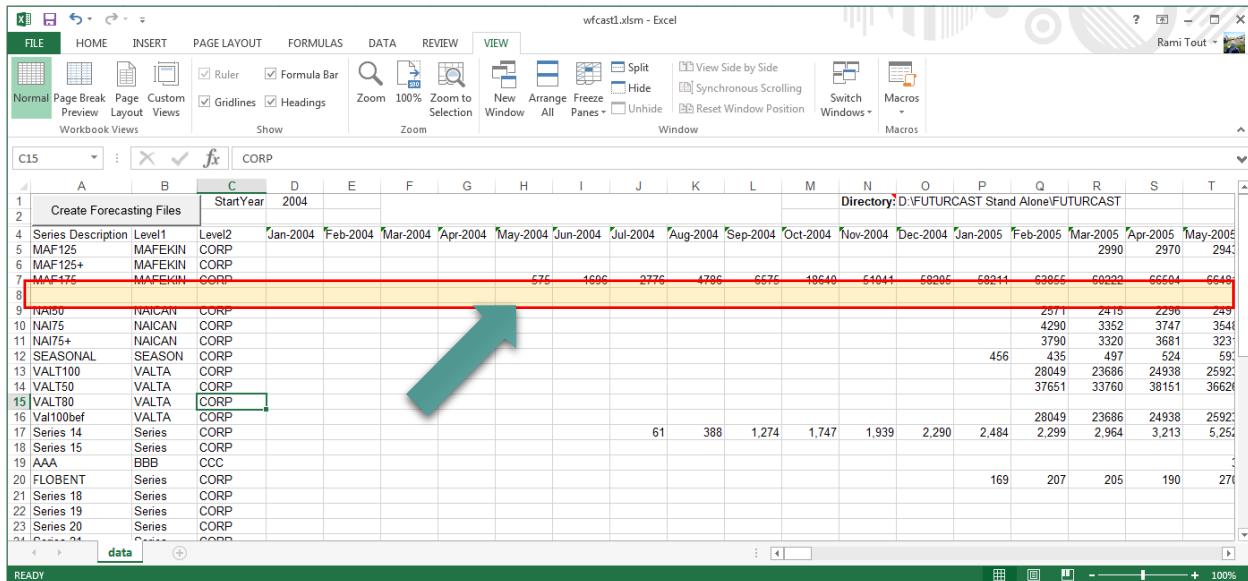
3.2.3 Adding Historical Values


- Beginning and ending new historical values may be entered for any defined data series. These values must either come just before or after the first or last observation.

Screenshot of Microsoft Excel showing a data table for 320. The table has columns for months from Jun-2007 to Feb-2009. A red arrow points to the cell AS20, which contains '320' and is highlighted in yellow. The cell AS20 is part of a row that includes 'AS' and 'AT'.

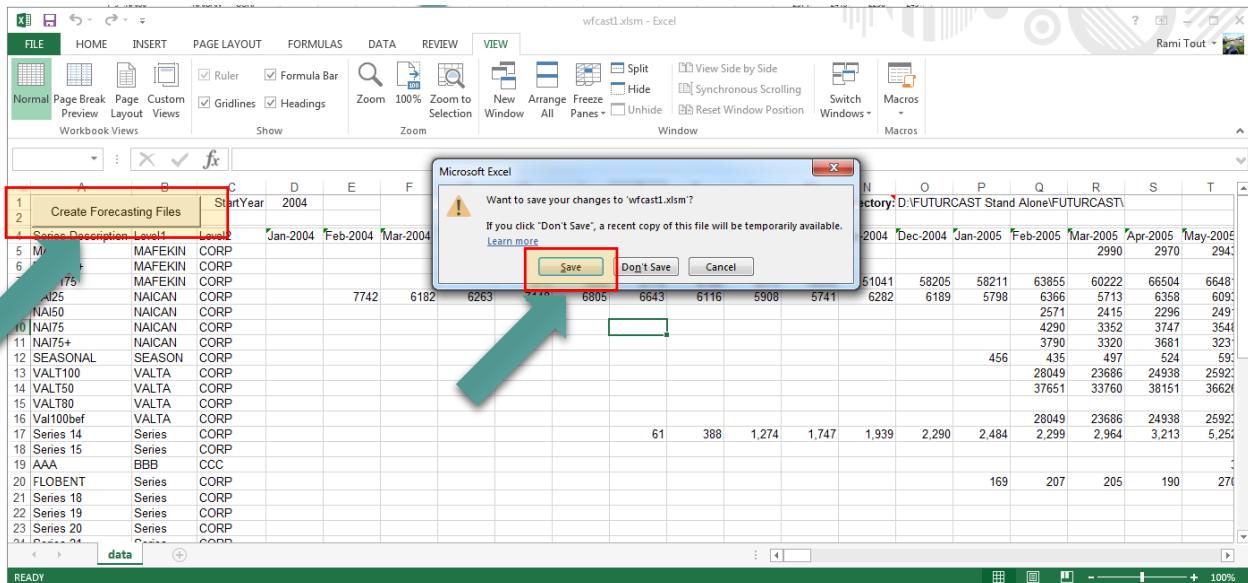
3.2.4 Deleting Historical Values

- To delete a data series from the WFCAST Excel data storage sheet go to the row of that data series (example: NAI25).
- Change all monthly values to “0”. WFCAST will not create a forecasting file for that series.


	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
1			StartYear	2004																
2	Create Forecasting Files																			
3																				
4	Series Description	Level1	Level2	Jan-2004	Feb-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004	Oct-2004	Nov-2004	Dec-2004	Jan-2005	Feb-2005	Mar-2005	Apr-2005	May-2005
5	MAF125	MAFEKIN	CORP																	2990
6	MAF125+	MAFEKIN	CORP																	2941
7	MAF125	MAFEKIN	CORP																	
8	NAI25	NAICAN	CORP	0	0	0	0	0	0	676	1696	2776	4786	6675	18640	51041	58205	58211	63865	60222
9	NAI50	NAICAN	CORP																2571	2416
10	NAI75	NAICAN	CORP																4290	3352
11	NAI75+	NAICAN	CORP																3790	3320
12	SEASONAL	SEASON	CORP																456	435
13	VALT100	VALTA	CORP																28049	23686
14	VALT50	VALTA	CORP																37651	33760
15	VALT80	VALTA	CORP																38151	36621
16	Val100bef	VALTA	CORP																28049	23686
17	Series 14	Series	CORP																24938	25921
18	Series 15	Series	CORP																3.213	5.251
19	AAA	BBB	CCC																	
20	FLOBENT	Series	CORP																	
21	Series 16	Series	CORP																	
22	Series 19	Series	CORP																	
23	Series 20	Series	CORP																	

Important Note:

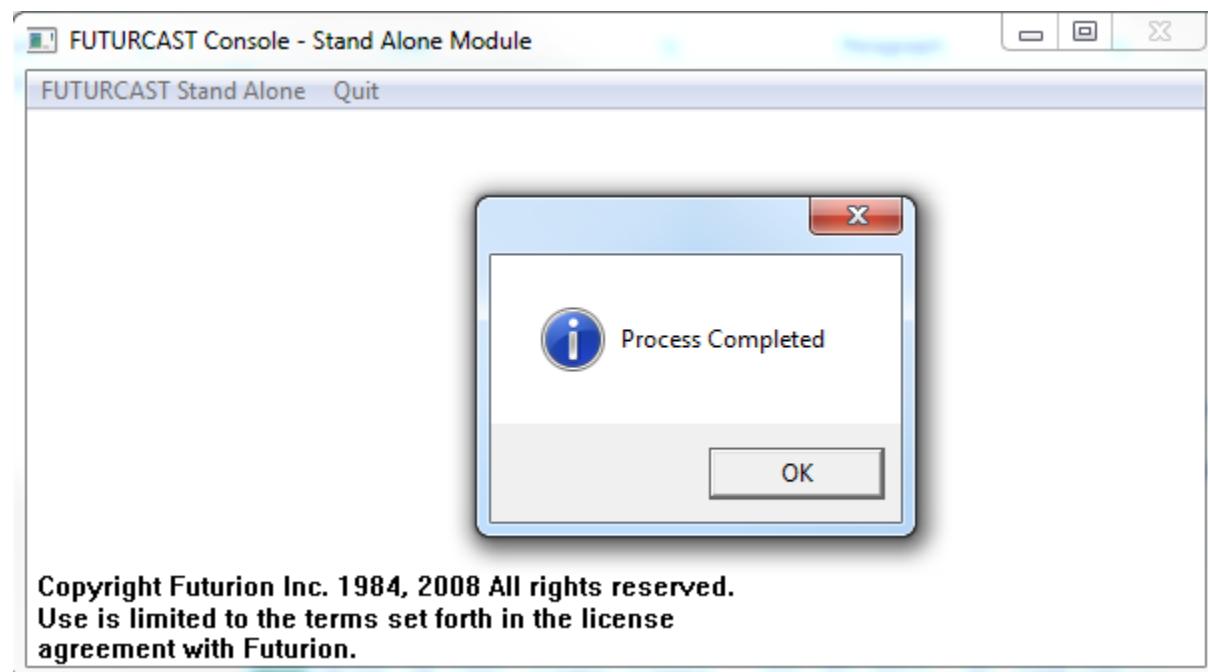
No blank cells should exist for a series


If in deleting NAI25 for example, the Excel function “clear contents” of an entire row would instead be applied; WFCAST will drop that row series and all row series below it as it will only create forecasting files for rows above the blanked row. An empty row breaks the sequence of data series and should therefore never exist. Also, no cell should be left blank within a series of data.

Excel screenshot showing the 'Create Forecasting Files' button highlighted in the top-left cell. A red arrow points to the 'Save' button in the 'Microsoft Excel' save dialog box that appears when closing the file.

3.3 Creating Forecasting Files

Once monthly data values are entered or changes are made in monthly cell values click on the “Create Forecasting Files” button to continue. Save and close the Excel file.


Excel screenshot showing the 'Create Forecasting Files' button highlighted in the top-left cell. A red arrow points to the 'Save' button in the 'Microsoft Excel' save dialog box that appears when closing the file.

Note:

Create Forecasting Files: This function must be executed before exiting the WFCAST spreadsheet and whenever changes are made to the stored data in order to Batch create the forecast for each series. . It will automatically save and exit the Excel spreadsheet.

Once the Excel file closes, the following window will appear notifying you that the data preparation process and Batch forecast execution are completed.

Click on **OK** to continue.

4 Forecasting Methods

FUTURCAST Stand Alone forecasting engine automatically filters and find substitute values for outliers before applying a forecasting method whenever data are not found to be inherently seasonal. In the latter cases, seasonality is first removed from data by using the Classical Decomposition method (Census method). Then, the chosen forecasting method is applied on the trend-cycle data, and seasonality is thereafter integrated in the forecasts using the computed seasonal factors.

FUTURCAST Stand Alone selects the most appropriate method from the following 5 options that have been found to be the most accurate and relevant methods depending on the pattern observed.

4.1 Forecasting with SINGLE (Single Exponential Smoothing)

Exponential Smoothing methods were developed in the early 1950s. Since then, they have become particularly popular methods for short term forecasting because they are easy to understand and need only a few data points to produce future predictions. These smoothing methods are well suited for immediate term predictions of individual items/products.

The method of single exponential smoothing is based on averaging (smoothing) past values of a time series in a decreasing (exponential) manner. It is suitable for stationary data or when there is a slow growth or decline over time. This is achieved by formula (1.1) which, if expanded by substituting previous values of F_t [see (1.2)], results in an exponentially decreasing weighting of past observations. Another way of looking at equation (1.1) is to express it in the form of equation (1.8), which is obtained by a simple algebraic manipulation of (1.1). Equation (1.8) indicates that the forecast for the next period is equal to the forecast of the current period plus an adjustment that depends upon the magnitude and sign of the error. This adjustment will be a multiple of the value of alpha. Thus, the error between the actual and the forecasted value for the current period is used to correct the forecast for the next period.

$$F_{t+1} = \alpha X_t + (1-\alpha) F_t \quad (1.1)$$

But

$$F_t = \alpha X_{t-1} + (1-\alpha) F_{t-1} \quad (1.2)$$

$$F_{t-1} = \alpha X_{t-2} + (1-\alpha) F_{t-2} \quad (1.3)$$

Substituting (1.2) into (1.1) gives:

$$F_{t+1} = \alpha X_t + (1-\alpha) (\alpha X_{t-1} + (1-\alpha) F_{t-1}) \quad (1.4)$$

$$F_{t+1} = \alpha X_t + \alpha(1-\alpha) X_{t-1} + (1-\alpha)^2 F_{t-1}$$

Similarly, substituting (1.3) into (1.4) will result in:

$$F_{t+1} = \alpha X_t + \alpha(1-\alpha) X_{t-1} + \alpha(1-\alpha)^2 X_{t-2} + (1-\alpha)^3 F_{t-2} \quad (1.5)$$

In general,

$$F_{t+1} = \alpha X_t + \alpha(1-\alpha) X_{t-1} + \alpha(1-\alpha)^2 X_{t-2} + \alpha(1-\alpha)^3 X_{t-3} + \alpha(1-\alpha)^4 X_{t-4} + \dots \quad (1.6)$$

Equation (1.6) illustrates how past values of the time series x_t , are weighted in an exponentially or geometrically decreasing manner, accounting for the name, exponential smoothing.

Equation (1.1) can be rewritten as:

$$F_{t+1} = \alpha X_t + F_t - \alpha F_t$$

Or

$$F_{t+1} = F_t + \alpha(X_t - F_t) \quad (1.7)$$

Or

$$F_{t+1} = F_t + \alpha_t e_t \quad (1.8)$$

Where $X_t - F_t$ is the difference between the actual and forecasted value, i.e. the residual error, e_t . Thus, the forecast for period $t+1$ is the same as that of period t plus a percentage adjustment of the last error (the forecast is adjusted in the direction indicated by the sign of the error). This adjustment principle is a powerful one and is used widely in engineering and statistics.

In order to use single exponential smoothing, a value alpha (α) must be specified. Default values are set depending upon data frequency. In general a value of .3 is used whereas a value of .1 is applied when historical data are sparse (many zero values). Alternatively, the user of **FUTURCAST Stand Alone** can select his or her own value for alpha. In general, the smaller the value of alpha, the more the smoothing (averaging) of the data and vice versa. The output of SINGLE includes the value of alpha used by the program and gives equation (1.1) with the numerical value of alpha.

Key points related to the use of **SINGLE** method:

- No trend (no forecasted growth or decline)
- Forecasts level
- Stationary data
- $\text{Alpha} = \% \text{ of weight on last observation}$
- $\text{Alpha} = 0.10$: Stable forecast (uses last 12 months to determine level)
- $\text{Alpha} = 0.30$: Reactive forecast (uses last 6-8 months to determine level)
- Alpha should not be greater than 0.5
- The closer alpha value is to zero, the more weight is placed on the long term history

Note:

Use **SINGLE** for products with flat demand, increasing products that have leveled or decreasing products that have leveled.

4.2 Forecasting with CMFS (Carbone-Makridakis Forecasting System)

All other forecasting methods assume that established patterns will not change in the future. However, this is not a realistic assumption for business and economic series that exhibit frequent pattern changes. This section describes a novel method for forecasting which makes a clear distinction between the two phases of forecast preparation. The first phase requires fitting a model to available historical data. The second phase involves forecasting beyond the present for future values that are not yet known. Unlike all other methods, the emphasis is placed on the second phase. The approach is based on the idea of using different forecasting strategies (models) depending upon the extent of pattern stability identified in the past data.

CMFS differentiates between two basic models (strategies): a short and a long term. The former employs a model that can readily adapt to changes in the data pattern as they occur. Since its objective is the short term, it does not care whether the changes are temporary or permanent. The long term strategy recognizes that all pattern changes are temporary. This implies that the most recently established pattern does not necessarily provide the best basis to extrapolate for the further future. Thus, a long term model which does not overreact to transient pattern shifts is needed. This model captures and extrapolates the established long term trend. The two models produce different forecasts that must be reconciled to produce final forecasts.

The general model formulation which encompasses both strategies can be written as:

$$X(t) = \sum_{j=0}^q b_j(t) t^j \left[\prod_{i=1}^L l_i(t)^{z_i(t)} \right] + e(t) \quad (5.1)$$

Where t indicates time period, thus $t = 1, 2, 3, \dots, T$, and T is the number of historical data periods,

$x(t)$ represents the elements of the time series at time t ,

$z_i(t)$ equal 1 if the t -th observation is of season i

Otherwise, it is 0,

L is the length of the seasonality

q is the degree of a polynomial in time,

$l_i(t)$ is the value, at time t , of the seasonal coefficient assigned to the i -th season.

The b 's are the time-varying values assigned to the various specified terms (mean, trend, quadratic, etc.) of the polynomial function and $e(t)$ is a random noise term.

Forecasting strategies are determined within the context of (6.1) by specifying a value for q – the higher the value of q , the more short term the forecasting strategy. If q is set to two, this results in a trend model that for all practical purposes is adequate for adapting and capturing short term pattern changes. The model when $q = 2$ is as follows:

$$X(t) = b_0 + b_1(t) + b_2(t)t^2 \left[\prod_{i=1}^L l_i^{z_i(t)} \right] + e(t) \quad (5.2)$$

The long term model can be best expressed when $q=0$ as

$$X(t) = b_0(t) \left[\prod_{i=1}^L l_i(t)^{z_i(t)} \right] + e(t) \quad (5.3)$$

Fitting the models represented by expressions (5.2) and (5.3) by some adaptive filtering method has been shown to be theoretically similar to running respectively Holt and some variant of single exponential smoothing. **CMFS short term forecasts in FUTURCAST are then those produced by Holt's exponential smoothing.** As for the long term forecasts, they are obtained by applying the following step approach.

- Step 1:** Run single exponential smoothing to identify the optimal smoothing constant.
- Step 2:** Identify by how much the smoothing constant must be reduced to avoid perturbations caused by random fluctuations. Run single exponential smoothing using that new smoothing constant.
- Step 3:** Store the new smoothed fitted values.
- Step 4:** **Run a trend regression on the values stored at Step 3 and extrapolate to obtain the long term forecasts.** This step is performed automatically by **FUTURCAST Stand Alone**.

The short and long term forecasts are then reconciled as follows:

$$\begin{aligned} F(h) &= F_s(h) && \text{if } h < h_0 \\ F(h) &= F_l(h) + \alpha^{h-h_0}[F_s(h) - F_l(h)] && \text{if } h \geq h_0 \end{aligned} \quad (5.4)$$

Where $F(h)$, $F_s(h)$ and $F_l(h)$ are the final, short and long term forecasts

Respectively and the parameters h_o and α determine the timing and speed of reconciliation.

Their limits are

$$h_o < K$$

$$0 < \alpha < 1$$

In expression (5.4) it can be seen that the short term model is exclusively used until period h_o . After period h_o both the short and the long term models are utilized and their difference ($F_s(h) - F_l(h)$) reconcile. The reconciliation depends upon the value of alpha and is done in an exponential fashion. This has been found to be the best reconciliation technique.

To run CMFS, two specific questions must be answered. The first is "After how many forecasts should reconciliation begin?" The default option is 1. You can change this to a larger integer if you believe that the most recent pattern in your data is likely to continue longer. That is, if you believe that the short term forecasting model should be used, exclusively for more than X periods (in terms of expression (5.4) you are asked to specify h_o).

The second specific question is "Speed of Reconciliation". The default implies an average speed in terms of going from the short to the long term forecasts. The smaller the default value, the faster the reconciliation. Larger the value, slower is the reconciliation. The closer the value is to 1, the forecast will exhibit more and more the short term trend. For example, for $\alpha = 0.1$, convergence to long term forecasts will be achieved in 3 periods; for $\alpha = 0.9$, around 7 periods; for $\alpha = 0.95$, around 30 periods and so on.

The Carbone-Makridakis Forecasting System is a most powerful and accurate forecasting approach. Its performance is, however, dependent on the turning point indicator and speed of reconciliation used. Empirical analysis on many series has indicated that the method is most suited for growing products (data) since it automatically incorporates a trend dampening factor.

Key points related to the use of CMFS method:

- Reconciles a short term and long term forecast
- Short term forecast based on HOLT, long term forecast is based on LINEAR on smoothed data.
- Turning point is the number of months to use the short term forecast (HOLT).
- Speed of reconciliation is the rate at which the forecast turns from the short term to the long term forecast.
- Embodies concept of trend dampening.

Note:

Use CMFS for growing products.

4.3 Forecasting with Holt (CMFS: Short-Term Only)

Holt's exponential smoothing is similar to single except that it includes an extra equation to estimate the trend that is then used to forecast. As such, it attempts to deal with data that exhibit a significant trend.

The three equations used in Holt's model are:

$$S_t = \alpha X_t + (1-\alpha) (S_{t-1} + T_{t-1}) \quad (2.1)$$

$$T_t = \beta (S_t - S_{t-1}) + (1 - \beta) T_{t-1} \quad (2.2)$$

$$F_{t+m} = S_t + mT_t \quad (2.3)$$

where m is the number of periods ahead of the last historical observation to be forecasted.

Equation (2.1) is similar to the original single exponential smoothing equation except that a term for the trend (T_{t-1}) is added. The value of this term is calculated using equation (2.2). The difference between two successive exponential smoothing values is used as an estimate of the trend. Since successive values have been smoothed for randomness, their difference constitutes the trend in the data. The estimate of the trend ($S_t - S_{t-1}$) is smoothed by multiplying it by the smoothing constant β and then added to the product of the old estimate of the trend multiplied by $(1 - \beta)$. That is, equation (2.2) is similar to equation (2.1), or the general form of the smoothing equation, except that the smoothing is not done for the actual data but rather for the trend. The final result of (2.2) is a smoothed trend that does not include randomness.

In order to forecast, the last estimated trend is multiplied by the number of periods ahead that one desires to forecast and then the product is added to S_t (the most current level of the data that has been smoothed to eliminate randomness).

Alpha is the same as that used in single. In Holt's model, the alpha parameter smooths the data to eliminate randomness in the level (mean) of the data. The Holt method is a special case of CMFS, It is the method applied if all forecast are specified as short term (turning point equals the number of forecasts). Alpha and/or beta optimal values are found automatically through **FUTURCAST**.

The specific output of **FUTURCAST** for CMFS short term is the forecasted values.

Key points related to the use of Holt method:

- Straight line extrapolation based on the last estimated trend. Highly reactive method.
- Alpha and Beta should be automatically specified by **FUTURCAST**.

Note:

Use **Holt** for growing products with expected short term continued growth.

4.4 Forecasting with Linear (CMFS: Long Term Only)

Linear trend fits a straight line to a set of data and then it extrapolates it in order to forecast. The concept behind linear trend fitting is to draw a straight line in such a way that it passes through the middle of the data. The mathematical equation describing this straight line is given by (3.1). It is fitted in such a way that the sum of the squared deviations (the differences between actual values of the time series and those estimated by equation (3.1) are as small as possible). This is done by calculating the values of **a** and **b** (needed to specify the line) using the method on least squares.

The equation used to calculate the trend line is:

$$X_t^1 = a + bt \quad (3.1)$$

Where

a is an estimate of the intercept

b is an estimate of the slope

t denotes time (i.e. 1, 2, 3, ..., n)

X_t^1 is the estimate of the data point corresponding to period t.

The quantity $X_t - X_t^1$ is the residual or error, et. The squared sum of all the errors will be a minimum as long as (3.2) and (3.3) are used to estimate the values of **a** and **b**.

The values of **a** and **b** can be found using the following two formulae:

$$a = \frac{\sum X}{n} - b \times \frac{\sum t}{n} \quad (3.2)$$

$$b = \frac{n \sum tX - \sum t \sum X}{n \sum t^2 - (\sum t)^2} \quad (3.3)$$

Where all the summations go from 1 to n, and n is the number of data points.

Forecasting requires use of equation (3.4)

$$F_{t+m} = a + b(t + m) \quad (3.4)$$

Where $t + m$ is the number of the period for which a forecast is to be prepared.

There are some similarities between (3.2), (3.3), (3.4) and Holt's exponential smoothing. Both trend extrapolation and Holt's exponential smoothing require estimates for **a** (S_t) and **b** (T_t). However, in Holt's model these estimates (S and T) vary from period to period in a way that depends upon changes in the pattern of data. The final objective, however, is the same – both types of methods look for a level (**a** or S_t) and a trend (**b** or T_t) in order to forecast.

Trend extrapolation is appropriate for long term forecasting when cyclical (or other fluctuations) are not critical. The objective of trend fitting is to discover the best linear trend and then extrapolate it in order to forecast. Forecast under Linear are obtained by applying CMFS long term. This means that the turning point is set to 1 and speed of reconciliation is immediate (.01).

Key points related to the use of **Linear** method:

- Constant unit change model (straight line trend)
- Stable long term method
- Fits a straight line to historical data and extrapolates it into the future.

Note:

Use **Linear** for Minor products that are growing at a constant rate.

4.5 Forecasting with Exponent (Exponential Growth/Decline models)

Exponential growth models are appropriate for long-term forecasting when growth rates are constant over time. This is characteristic of the sales of several products and companies. An exponential growth curve has a constant rate of growth at any point in time, resulting in large increases over longer periods of time as the increase is compounded exponentially. With an annual growth rate for 5%, the series will double in fourteen years and will become more than five times the initial value in thirty-four years' time. The model for a growth curve can be approximated by the following equations:

$$y_t = e^{a+bt} \quad (4.1)$$

Where

y_t is the time series at time t

$e = 2.71828$

a is the intercept

b is the equivalent of the slope and denotes the growth rate.

Equation (4.1) can be transformed to make it linear, by taking natural logarithms of both sides of the equation. This gives:

$$\log y = (a + bt) \log(e)$$

Or

$$\log y = a + bt \quad (4.2)$$

Since $\log(e) = 1$

Defining

$$y_t^1 = \log e y_t \quad (4.3)$$

Equation (4.2) becomes

$$y_t^1 = a + bt \quad (4.4)$$

Applying then least squares to (4.4) allows us to estimate the values of a and b and then use them in (4.5) to forecast future values.

$$F_{(t+m)} = e^{a+bt} \quad (4.5)$$

where m is the number of periods ahead to be forecasted. From the value of b the growth rate can be found as:

$$\text{Growth rate} = b + \frac{b}{2} + \frac{b}{6}$$

Thus, if b is found to be 0.052, the growth rate is:

$$0.052 + \frac{0.052}{2} + \frac{0.052}{6} = 0.0534$$

The specific inputs and outputs of EXPON are the same as those of LINEAR.

Key points related to the use of **Expont** method:

- Constant percentage model (exponential trend)
- Stable, long term method (weighs all data equally)

Note:

Use **Expont** for products declining at a steady rate with expected continued growth. Very rarely is exponential growth sustained through the years.

4.6 Seasonality Analysis Using CLASSD (The Classical Decomposition Method)

Decomposition methods, as the name implies, "breaks down" a time series into four components – seasonality, trend, cycle, and randomness – that constitute the great majority of economic and business time series. The principle of decomposition methods is empirical. Furthermore, decomposition approaches provide information (such as the state of the trend-cycle) which is not available with alternative methods.

In the decomposition category, there are two main techniques – Classical Decomposition, and the Census II method. Both are similar in principle. The only difference is that Census II is much more elaborate (this does not imply more precise). Both methods assume that economic or business-oriented time series are made up of four components – seasonality, trend, cycle, and randomness. They usually assume that the relationship between these four components is multiplicative (Census II allows for an additive relationship too) as shown in equation (6.1) of the form:

$$X_t = S_t T_t C_t R_t \quad (6.1)$$

Where

X_t is the time series

S_t denotes seasonality

T_t denotes trend

C_t denotes cycle

And

R_t denotes randomness

Alternatively, one could assume an additive relationship of the form

$$X_t = S_t + T_t + C_t + R_t$$

But additive models are not commonly encountered in practice.

If a moving average of L periods (where L is the length of seasonality, let us assume that $L=12$, that is if the data is monthly) is calculated, it will represent the mean value for the year. Such a value will obviously be free of seasonality since high months will be offset by low ones. If M denotes the moving average of (6.1), it will be free of seasonality and will contain little randomness (randomness, by definition is sometimes negative and other times positive). Thus, if twelve values are added, the average will include little or no randomness and M_t can be set as:

$$M_t = T_t C_t \quad (6.2)$$

Equation (6.2) has no seasonality, or randomness that has been eliminated through the averaging process. Thus, the equation includes only the trend-cycles component. One can decompose (6.2) further by assuming some form of trend. For example, you might decide that the trend is linear (see 3.1). In this case, you will have:

$$T_t = a + b1 \quad (6.3)$$

If (6.3) is divided into (6.2) the cycle will be isolated from the trend. That is:

$$\frac{M_t}{a + bt} = \frac{T_t C_t}{T_t} = C_t \quad (6.4)$$

If a linear trend is not appropriate, you may wish to specify a nonlinear one. Alternatively you can assume any other type of growth and use it to separate the trend from the cycle. In practice, however, it is often preferable not to separate the trend from the cycle. That is, work with the trend cycle of (6.2).

Once the trend-cycle values of (6.2) are known, (6.2) can be divided by (6.1). The result is:

$$\frac{X_t}{M_t} = \frac{S_t T_t C_t R_t}{T_t C_t} = S_t R_t \quad (6.5)$$

Expression (6.5) includes seasonality and randomness. In order to estimate seasonality, randomness needs to be eliminated from (6.5). This can be done by averaging the seasonal factors for each of the twelve months and computing their averages. These averages form the basis of the seasonal indices (the smallest and largest index is eliminated before the average is computed).

FUTURCAST Stand Alone automatically uses CLASSD to establish the seasonal indices under inherent seasonality.

Key points related to the use of **CLASSD**:

- Breaks down a time series into four components:
 - Seasonality
 - Trend
 - Cycle
 - Randomness
- Computes seasonal indices to integrate seasonality in the forecast

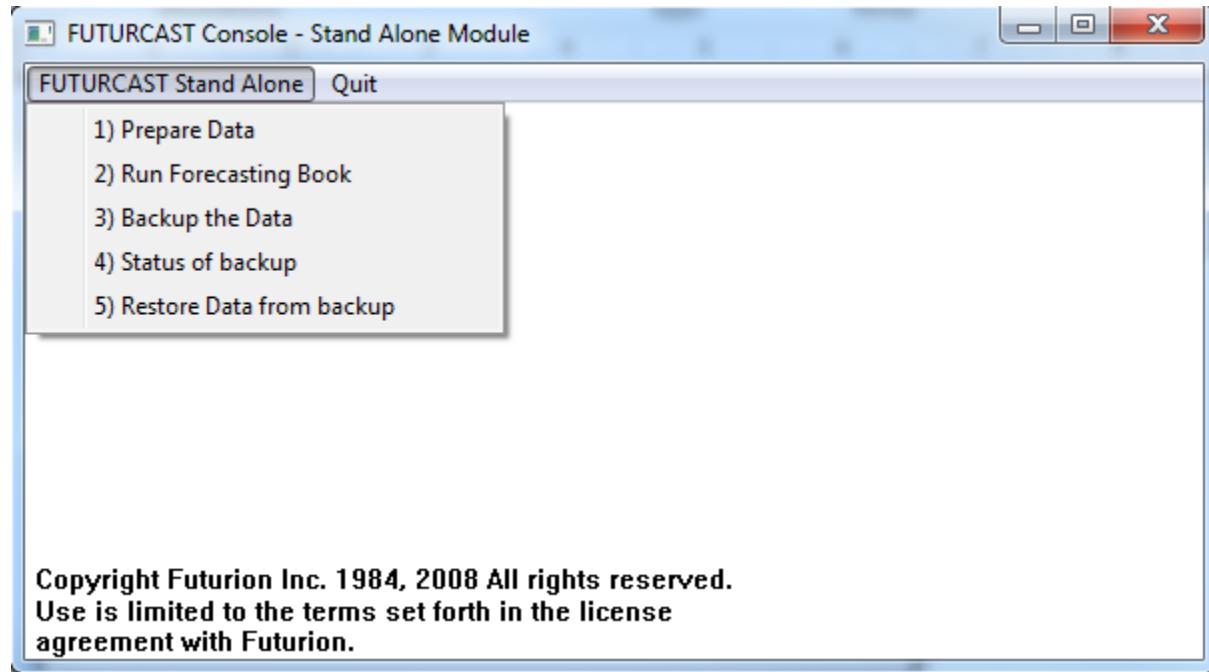
Note:

CLASSD is not a forecasting methodology. However, under Inherent seasonality, the selected forecasting method is applied on adjusted historical data values that are obtained by having removed seasonality from the data. This represents an alternative filtering process and fitted rather than filtered data are represented for the past.

4.7 Forecasting Method Selection

Method	Description	Method to Apply
SINGLE	SINGLE method is based on averaging (smoothing) past values of a data time series in a decreasing manner. Popular method for short-term forecasting because easy to understand and only use a few data points to produce future predictions. Suitable for when there is slow growth or decline of product over time.	Use SINGLE for products with a flat demand, increasing products that have leveled, or decreasing products that have leveled.
CMFS	CMFS is considered to be the most powerful and accurate method. Highly dependent on the turning point indicator CMFS involves forecasting beyond the present for future patterns not yet known. The model is best known for using different forecasting strategies while providing you with a list of both short term and longer term forecasts.	Use CMFS for growing products
EXPONT	Appropriate for long term forecasting with constant growth rates over time where many items are to be forecasted (i.e. sales of several products and companies).	Use EXPONT for products declining at a steady rate with expected continued decline.
HOLT	Similar to the SINGLE methodology, the HOLT method attempts to deal with data that shows significant evidence of a trend. HOLT smoothes the data to eliminate randomness in a level of data.	Use HOLT for growing products with expected short term continued growth.
LINEAR	The idea behind the LINEAR method is to draw a straight line in such a way that it passes through the middle of a series of data. Appropriate for long term forecasting when cyclic variations are not that significant to the forecast.	Use LINEAR for minor products that are growing at a steady/constant rate.
CLASSD	Only a diagnostic analysis, this model decomposes a time series of data into four components: 1) Seasonality 2) Trend 3) Cycle 4) Randomness. This indicates the direction in the data by individually analyzing these components.	Not to be used for forecasting. Used to estimate seasoned indices.

All methods may apply the CLASSD seasonal indices under the inherent seasonality option. Otherwise, all methods are applied on filtered data.

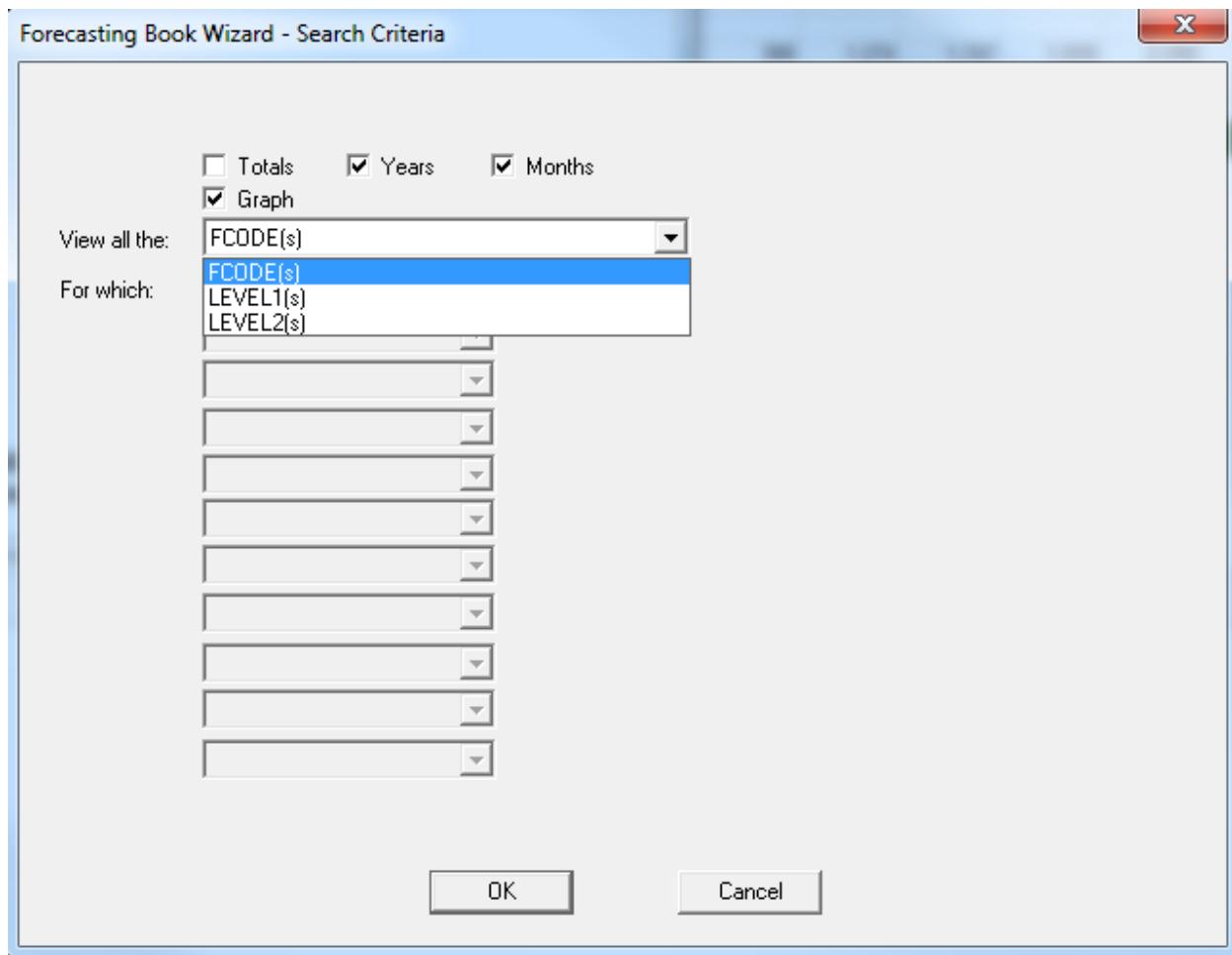

5 Glossary and Terms

CLASSD:	(Classical Decomposition Method) Breaks down a time series into four components - seasonality, trend, cycle, and randomness. Assumes that the relationship between these four is multiplicative.
CMFS:	(Carbone-Makridakis Forecasting System) Differentiates between two basic models: a short term and a long term. The short term model is produced by Holt's Exponential Smoothing. It readily adapts to changes in the data pattern. The long term model is produced by Linear, which captures and extrapolates the established long term trend. The long term model recognizes that all pattern changes are temporary.
CYCLICALITY:	Cycles do not repeat themselves at equal intervals. Depth and duration also vary. Cyclicality is calculated by the computer in the method Classical Decomposition.
ERROR:	Actual – Forecast
EXPONT:	(Exponential Growth Model) Appropriate for long term forecasting when product is declining at a steady rate. If used for a growing product will result in large increases over longer periods of time as the increase is compounded exponentially.
FIRST OBSERVATION TO BE USED:	One of the standard questions asked when using a forecasting method. User may want to ignore the first part of the historical data when developing a forecast and begin with an observation other than 1. The default is 1>.
HOLT:	(Holt's Exponential Smoothing) Similar to Linear Exponential Smoothing except that it includes an extra equation to estimate the trend in demand. The estimate of the trend is smoothed, not the actual data. Alpha smooths the data to eliminate randomness, beta smooths the trend. Alpha and beta can be specified by the user, or the optimal values can be calculated by FUTURCAST .
LINEAR:	Linear trend. Fits a straight line to a set of data and then extrapolates it in order to forecast. This method is appropriate for long term forecasting growth products when cyclicality is not critical.
NUMBER OF FORECASTS:	FUTURCAST Stand Alone automatically produces 36 forecasts.
R-SQUARE:	Measures fit of forecasting model. Ranges between 0 and 1, with "0" indicating no fit, and "1" indicating a perfect fit. However, a perfect fit does not guarantee a perfect forecast.
SEASONALITY:	A value of 1.00 means an average month in terms of demand; a value of less than 1.00 would be lower demand than the average month, while a coefficient of greater than 1.00, means the opposite. Seasonality is calculated by the system (historical data must have a minimum of 24 data points for seasonality to be calculated, using the Winter's method, or 36 data points for all other methods).
SINGLE:	Single Exponential Smoothing. Well suited for short term predictions. Needs only a few data points to produce a forecast. Based on a weighting of past values of a time series in a decreasing (exponential) manner.

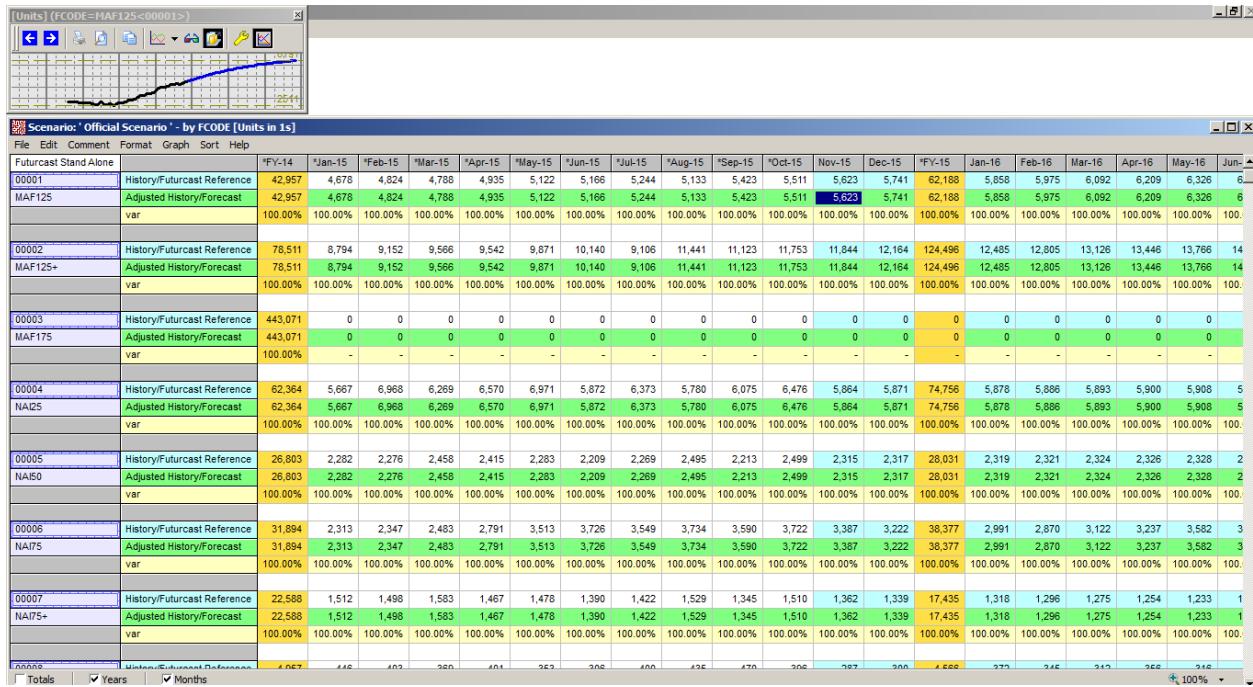
	<p>Suitable for stationary products or when there is slow growth or decline over time. Does not predict turning points. The forecast for the next period is equal to the forecast of the current period plus an adjustment that depends upon the magnitude and sign of the error. This adjustment will be a multiple of the value of alpha, which can be specified or calculated by the computer.</p>
--	---

6 Accessing, Modifying and Exporting the Batch Forecast

From the menu bar, select **FUTURCAST Stand Alone** to access the following drop window to either prepare and store the desired data you would like to forecast or run the Forecasting Book application or backup and restore your previously stored data.



Before we turn to describing the information content found in the **Forecasting Book**, let us examine the source Excel data file displayed again below.


1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	8010	8011	8012	8013	8014	8015	8016	8017	8018	8019	8020	8021	8022	8023	8024	8025	8026	8027	8028	8029	8030	8031	8032	8033	8034	8035	8036	8037	8038	8039	8040	8041	8042	8043	8044	8045	8046	8047	8048	8049	8050	8051	8052	8053	8054	8055	8056	8057	8058	8059	8060	8061	8062	8063	8064	8065	8066	8067	8068	8069	8070	8071	8072	8073	8074	8075	8076	8077	8078	8079	8080	8081	8082	8083	8084	8085	8086	8087	8088	8089	8090	8091	8092	8093	8094	8095	8096	8097	8098	8099	80100	80101	80102	80103	80104	80105	80106	80107	80108	80109	80110	80111	80112	80113	80114	80115	80116	80117	80118	80119	80120	80121	80122	80123	80124	80125	80126	80127	80128	80129	80130	80131	80132	80133	80134	80135	80136	80137	80138	80139	80140	80141	80142	80143	80144	80145	80146	80147	80148	80149	80150	80151	80152	80153	80154	80155	80156	80157	80158	80159	80160	80161	80162	80163	80164	80165	80166	80167	80168	80169	80170	80171	80172	80173	80174	80175	80176	80177	80178	80179	80180	80181	80182	80183	80184	80185	80186	80187	80188	80189	80190	80191	80192	80193	80194	80195	80196	80197	80198	80199	80200	80201	80202	80203	80204	80205	80206	80207	80208	80209	80210	80211	80212	80213	80214	80215	80216	80217	80218	80219	80220	80221	80222	80223	80224	80225	80226	80227	80228	80229	80230	80231	80232	80233	80234	80235	80236	80237	80238	80239	80240	80241	80242	80243	80244	80245	80246	80247	80248	80249	80250	80251	80252	80253	80254	80255	80256	80257	80258	80259	80260	80261	80262	80263	80264	80265	80266	80267	80268	80269	80270	80271	80272	80273	80274	80275	80276	80277	80278	80279	80280	80281	80282	80283	80284	80285	80286	80287	80288	80289	80290	80291	80292	80293	80294	80295	80296	80297	80298	80299	80300	80301	80302	80303	80304	80305	80306	80307	80308	80309	80310	80311	80312	80313	80314	80315	80316	80317	80318	80319	80320	80321	80322	80323	80324	80325	80326	80327	80328	80329	80330	80331	80332	80333	80334	80335	80336	80337	80338	80339	80340	80341	80342	80343	80344	80345	80346	80347	80348	80349	80350	80351	80352	80353	80354	80355	80356	80357	80358	80359	80360	80361	80362	80363	80364	80365	80366	80367	80368	80369	80370	80371	80372	80373	80374	80375	80376	80377	80378	80379	80380	80381	80382	80383	80384	80385	80386	80387	80388	80389	80390	80391	80392	80393	80394	80395	80396	80397	80398	80399	80400	80401	80402	80403	80404	80405	80406	80407	80408	80409	80410	80411	80412	80413	80414	80415	80416	80417	80418	80419	80420	80421	80422	80423	80424	80425	80426	80427	80428	80429	80430	80431	80432	80433	80434	80435	80436	80437	80438	80439	80440	80441	80442	80443	80444	80445	80446	80447	80448	80449	80450	80451	80452	80453	80454	80455	80456	80457	80458	80459	80460	80461	80462	80463	80464</

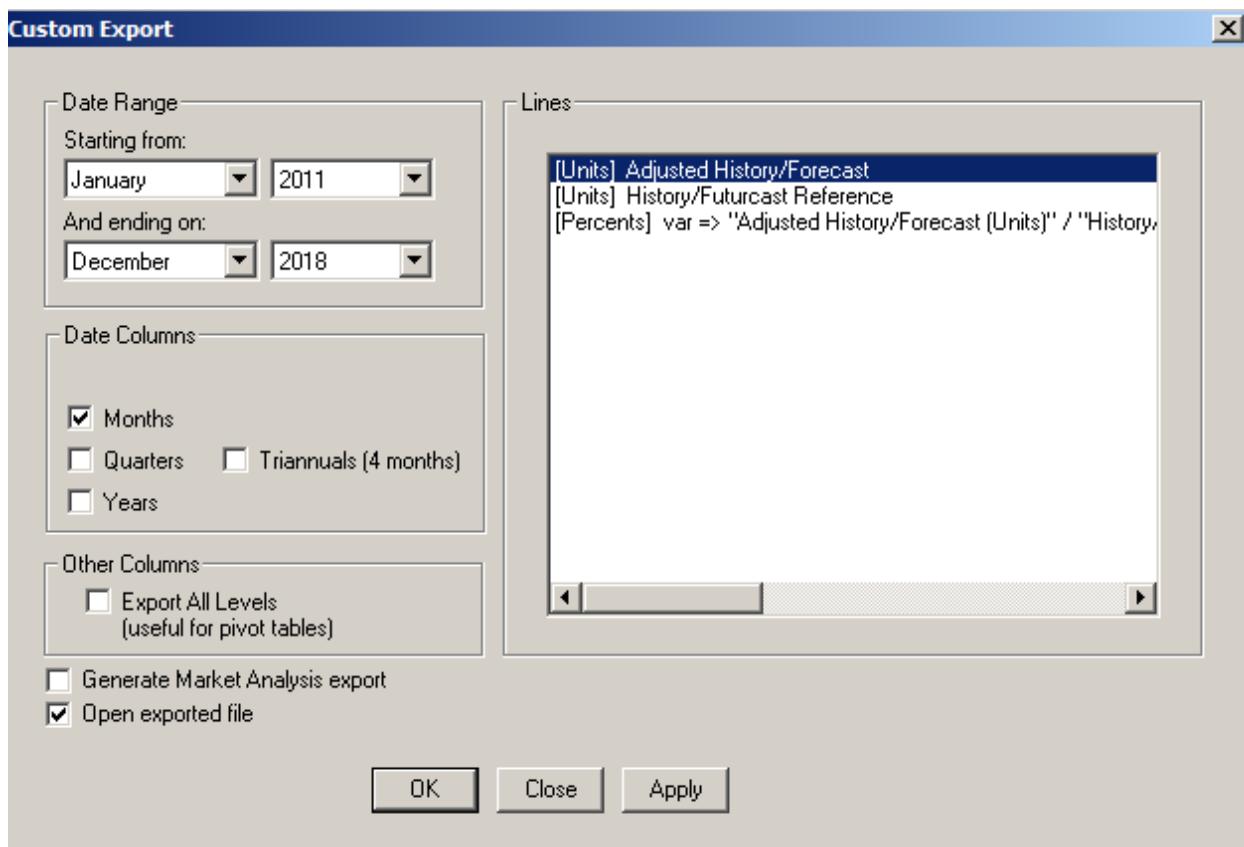
the level data, or modifying the forecast at the selected level that will cascade (prorate) back to the lowest level.

Click on **Run Forecasting Book**. The **Forecasting Book** wizard window will appear.

Click on **OK**, the Forecast View presented below will appear.

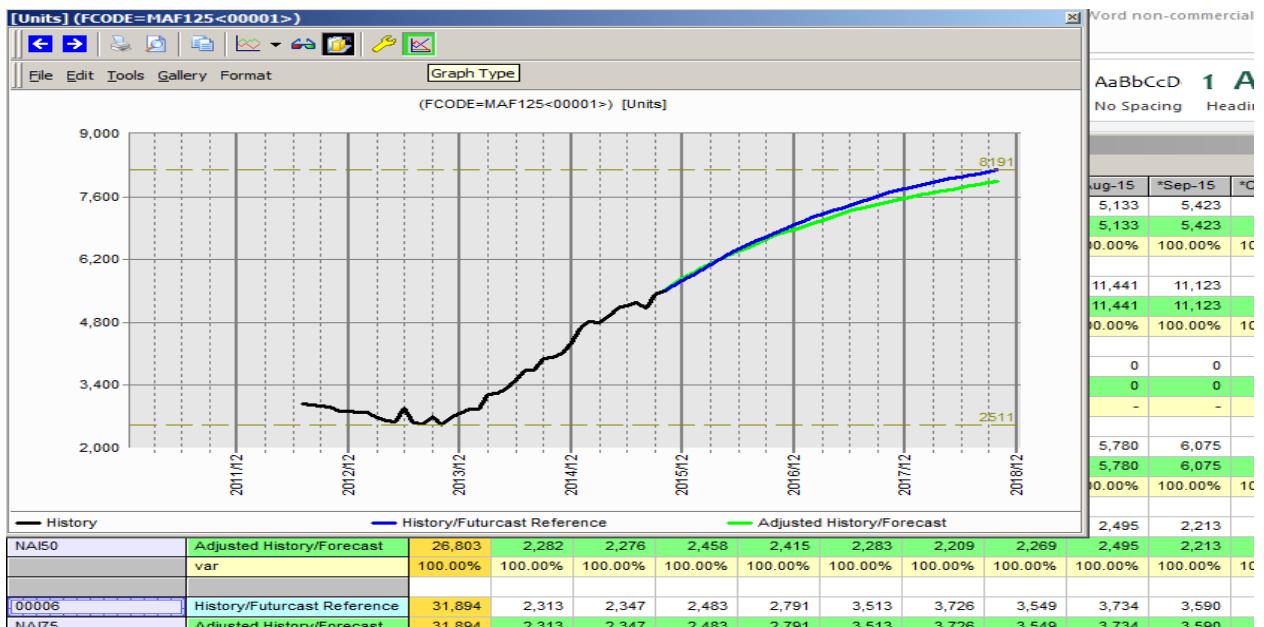
For each forecasting code (FCODE) the above Forecast View displays

- The history and **FUTURCAST** reference forecast (Expert System Statistical Forecast)
- A history/forecast line identical to the reference but which may be adjusted by either (1) selecting a different method or start point; or (2) applying the selected method from an earlier historical date; or (3) manually changing values applying the standard or advanced tab function in the fill confirmation window (discussed in the next section).
- A variance (var) line that displays 100% unless an earlier ending historical date is selected to perform a forecast evaluation. In such cases, the variances computed for the evaluated months are (Forecast – Actual) / Actual multiplied by 100.

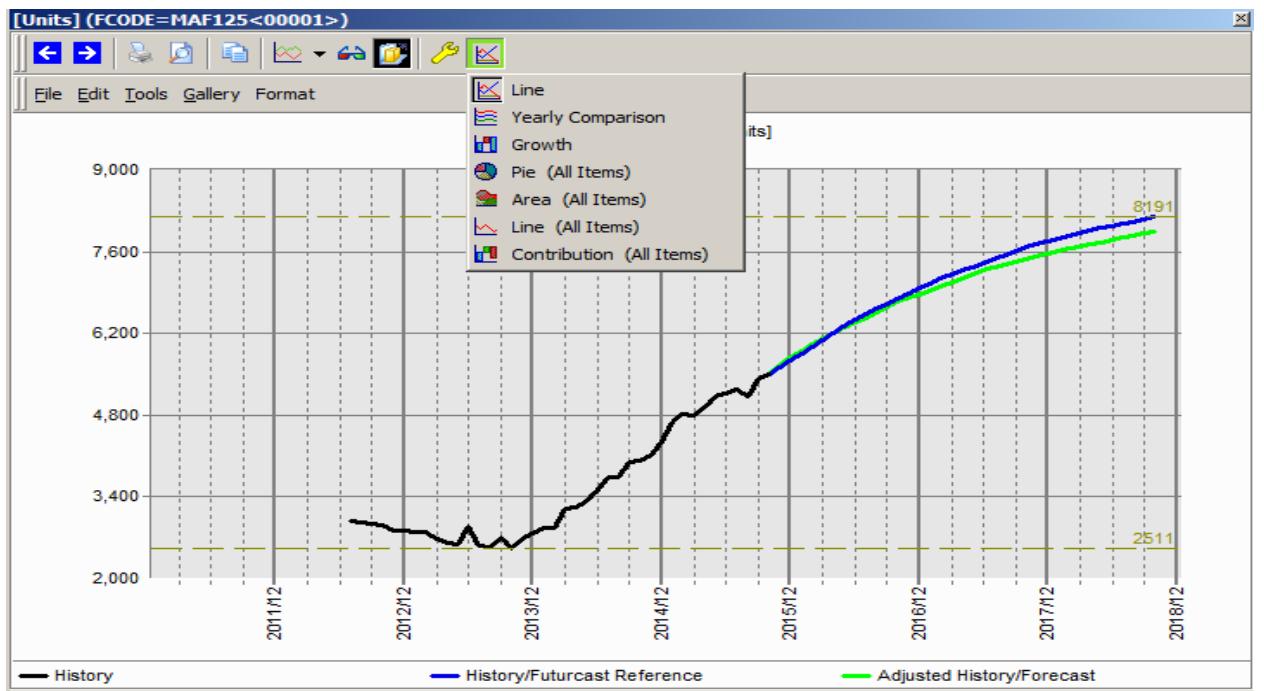

If you are not familiar with the **FUTURCAST Forecasting Book**, it is an Excel-like application. It is intuitive to navigate for Excel users. Often used functionalities are

6.1 Exporting the Forecast to Excel

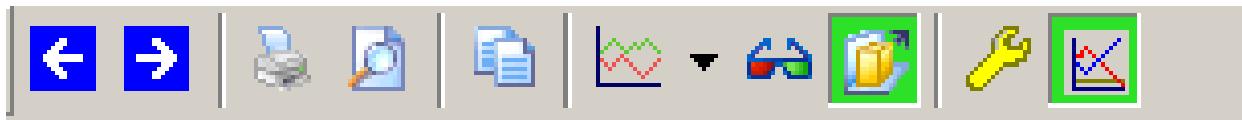
Select Export option under **File** in the Forecast View and **Custom Export** as shown below.


* Scenario: 'Official Scenario' - by FCODE [Units in 1s]																	
File		Edit Comment Format Graph Sort Help															
New Query		Ctrl+N															
Alternate Views		Last Reference															
Save 'Official Scenario'		History/Forecast															
Save As...		100.00%															
Open Import		Last Reference															
Print		History/Forecast															
Export		100.00%															
Properties		Entire Sheet															
Exit		FY-12															
		71															
		FY-13															
		71															
		FY-14															
		0%															
		FY-15															
		0															
00004		History/Futurcast Reference															
NAI25		Adjusted Hist															
var		Custom Export															
		100.00%															
00005		History/Futurcast Reference															
NAI50		Adjusted History/Forecast															
var		100.00%															
00006		History/Futurcast Reference															
			26,803	2,282	2,276	2,458	2,415	2,283	2,209	2,269	2,495	2,213	2,499	2,315	2,317	28,031	
			26,803	2,282	2,276	2,458	2,415	2,283	2,209	2,269	2,495	2,213	2,499	2,315	2,317	28,031	
			var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
			31,894	2,313	2,347	2,483	2,791	3,513	3,726	3,549	3,734	3,590	3,722	3,387	3,222	38,377	

The Custom Export window will open in order for the user to specify the data to be exported into an Excel CSV file



6.2 Graphing Options


Enlarge the graph appearing on the left hand corner of the screen to the desired size and click on the graph type icon


The multiple types of graph options will appear

The different icons in the Graph Window are

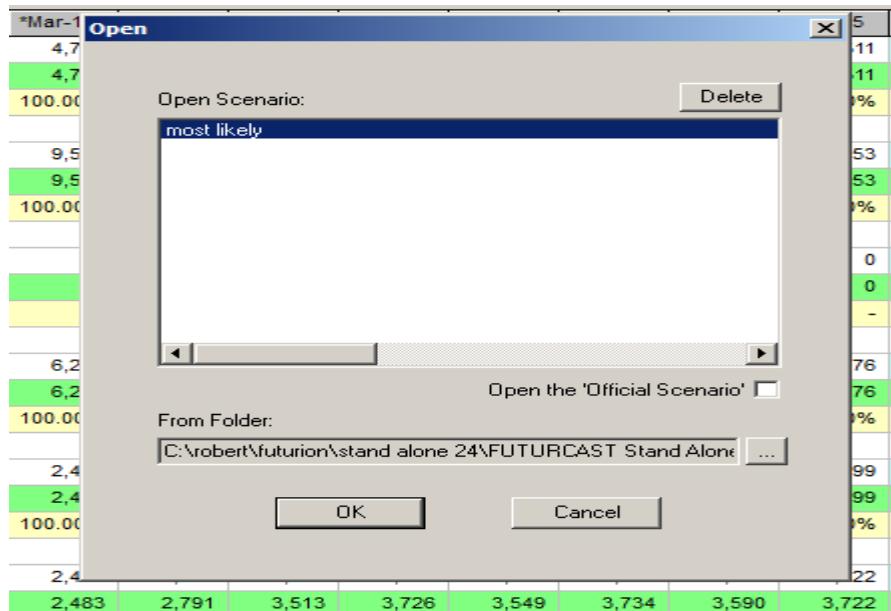
- a. Moving to a previous code/item
- b. Moving to the next code/item
- c. Printing the graph
- d. Print preview
- e. Copy to clipboard
- f. Graphic gallery: possible display options for a type of graph
- g. 3D to 2D
- h. Z-clustered
- i. Possible options for a type of graph (for example: the line graph)



- j. The various types of graph available (line, pie etc.)

6.3 Save 'As' or Saving a Forecast Scenario

Under File, select Save As, the Save As window will appear. Insert the name of a scenario and choose the storing location by clicking on the selection box



Storing your work in a scenario allows you to backup your forecasting activities

6.4 Accessing, Retrieving and Managing Scenarios

Under File, select Open and the Open scenario window will appear as shown below to allow you to open a selected scenario in the Forecasting application

6.5 AutoSum

Select **Totals** | **On** under format and the sum of each column will be displayed on the bottom of the view with a computation of the variances for the totals as shown below.

Scenario: 'Official Scenario' - by FCODE [Units in 1s]		File	Edit	Comment	Format	Graph	Sort	Help	FY-14																				
									Jan-15	Feb-15	Mar-15	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15	FY-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16			
Futurcast Stand Alone	Budget Rates	►							FY-14	Jan-15	Feb-15	Mar-15	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15	FY-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16		
00001	Totals	►	<input checked="" type="checkbox"/> On						42,957	4,678	4,824	4,788	4,935	5,122	5,166	5,244	5,133	5,423	5,511	5,623	5,741	62,188	5,858	5,975	6,092	6,209	6,209		
MAF125	Scales	Off							42,957	4,678	4,824	4,788	4,935	5,122	5,166	5,244	5,133	5,423	5,511	5,623	5,741	62,188	5,858	5,975	6,092	6,209	6,209		
	Decimals								100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%			
00002	History/Futurcast Reference	78,511	8,794	9,152	9,566	9,542	9,871	10,140	9,106	11,441	11,123	11,753	11,844	12,164	124,496	12,485	12,805	13,126	13,446										
MAF125+	Adjusted History/Forecast	78,511	8,794	9,152	9,566	9,542	9,871	10,140	9,106	11,441	11,123	11,753	11,844	12,164	124,496	12,485	12,805	13,126	13,446										
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
00003	History/Futurcast Reference	443,071	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MAF175	Adjusted History/Forecast	443,071	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	var	100.00%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
00004	History/Futurcast Reference	62,364	5,667	6,968	6,269	6,570	6,971	5,872	6,373	5,780	6,075	6,476	5,864	5,871	74,756	5,878	5,886	5,893	5,900										
NAI25	Adjusted History/Forecast	62,364	5,667	6,968	6,269	6,570	6,971	5,872	6,373	5,780	6,075	6,476	5,864	5,871	74,756	5,878	5,886	5,893	5,900										
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
00005	History/Futurcast Reference	26,803	2,282	2,276	2,458	2,415	2,283	2,209	2,269	2,495	2,213	2,499	2,315	2,317	28,031	2,319	2,321	2,324	2,326										
NAI50	Adjusted History/Forecast	26,803	2,282	2,276	2,458	2,415	2,283	2,209	2,269	2,495	2,213	2,499	2,315	2,317	28,031	2,319	2,321	2,324	2,326										
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
00006	History/Futurcast Reference	31,894	2,313	2,347	2,483	2,791	3,513	3,726	3,549	3,734	3,590	3,722	3,387	3,222	38,377	2,991	2,870	3,122	3,237										
NAI75	Adjusted History/Forecast	31,894	2,313	2,347	2,483	2,791	3,513	3,726	3,549	3,734	3,590	3,722	3,387	3,222	38,377	2,991	2,870	3,122	3,237										
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
AREA	History/Futurcast Reference	2,097,879	184,033	186,564	184,595	177,982	181,676	177,674	185,725	155,879	149,943	154,410	172,276	176,056	2,086,813	175,883	178,730	181,677	183,170										
	Adjusted History/Forecast	2,097,879	184,033	186,564	184,595	177,982	181,676	177,674	185,725	155,879	149,943	154,410	172,276	176,056	2,086,813	175,883	178,730	181,677	183,170										
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		

7 Using the Fill Feature

In the Forecasting View, double-click on a forecast value in the Adjusted History/Forecast row. The Fill confirmation window will open as shown in section 7.2. There are four different types of forecast Fill functions. These are explained in the next section.

7.1 Types of Fill

For a **Type of Fill**, there are four set of functions; (1) Standard Functions, (2) Advanced Functions, (3) Shifts Function, and (4) Statistical Forecast Method Tab.

7.1.1 Standard Functions

Standard Curves	
Constant Value	By default, this field holds the value in the selected cell. Keep this value or change it. The value in this field will be repeated in all the cells in the specified date range.
Change	Enter a value by which you want to increase or decrease the values in the specified date range. For example, if you enter 10, all the values in the specified date range will be increased by ten. Conversely, if you enter -10, all the values in the specified date range will be decreased by ten.
% Change	Enter a percentage by which the values in the specified date range will be increased. For example, if you enter 10, all the values in the specified date range will be increased by 10%. Conversely, if you enter -10, all the values in the specified date range will be decreased by 10%.

7.1.2 Advanced Functions

Advanced Curves	
Linear Curve	A simple mathematical model that calculates a straight line. By its nature, this curve is best suited to a time series that is expected to change by the same absolute amount in each time period.
Diffusion Curve	A mathematical model for a time series that is best applied for new products where adopters of a new product innovation or idea can be categorized as innovators, early adopters, early majority, and laggards.
% Diffusion Curve	A mathematical model for a time series that is best applied for new products where adopters of a new product innovation or idea can be categorized as innovators, early adopters, early majority, and laggards.
Exponential Curve	A mathematical model for a time series that is increasing or decreasing exponentially. An exponential curve is useful when it is expected that there will be increasing or declining growth for a time series.

Note:

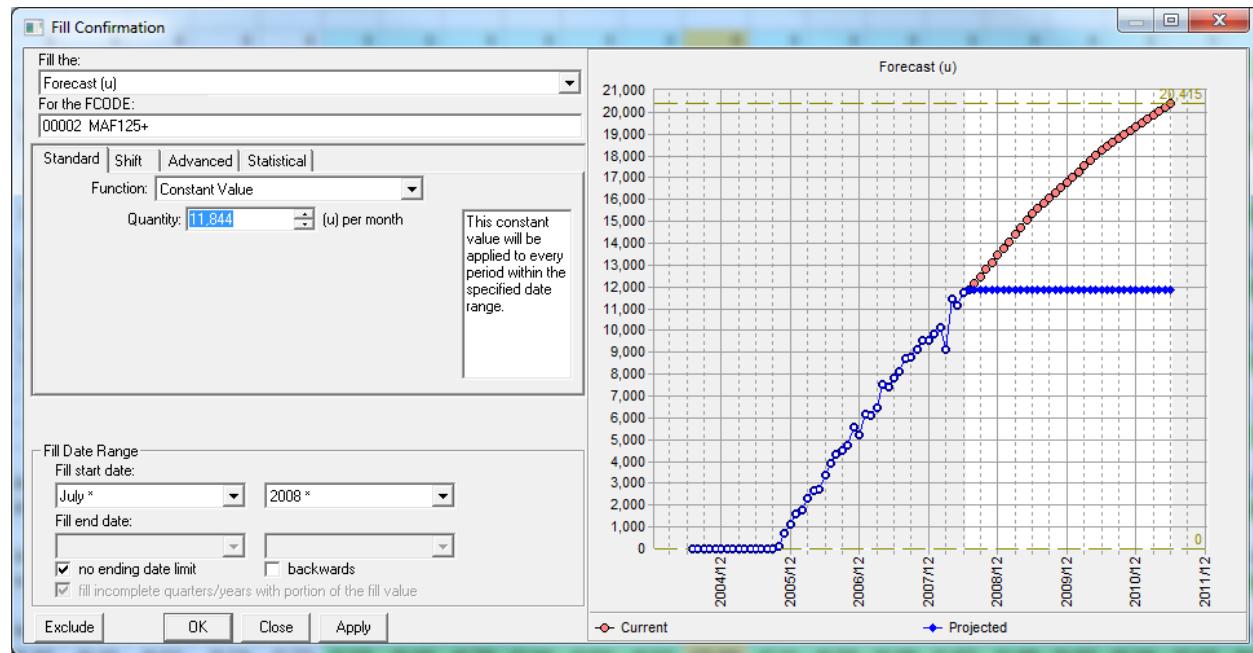
For all Advanced Functions, the user may use the Solve Function to identify the best fit parameters for the selected curve.

7.1.3 Shift Function

Shift

Shift the value from an old date to a new date

7.1.4 Statistical Functions

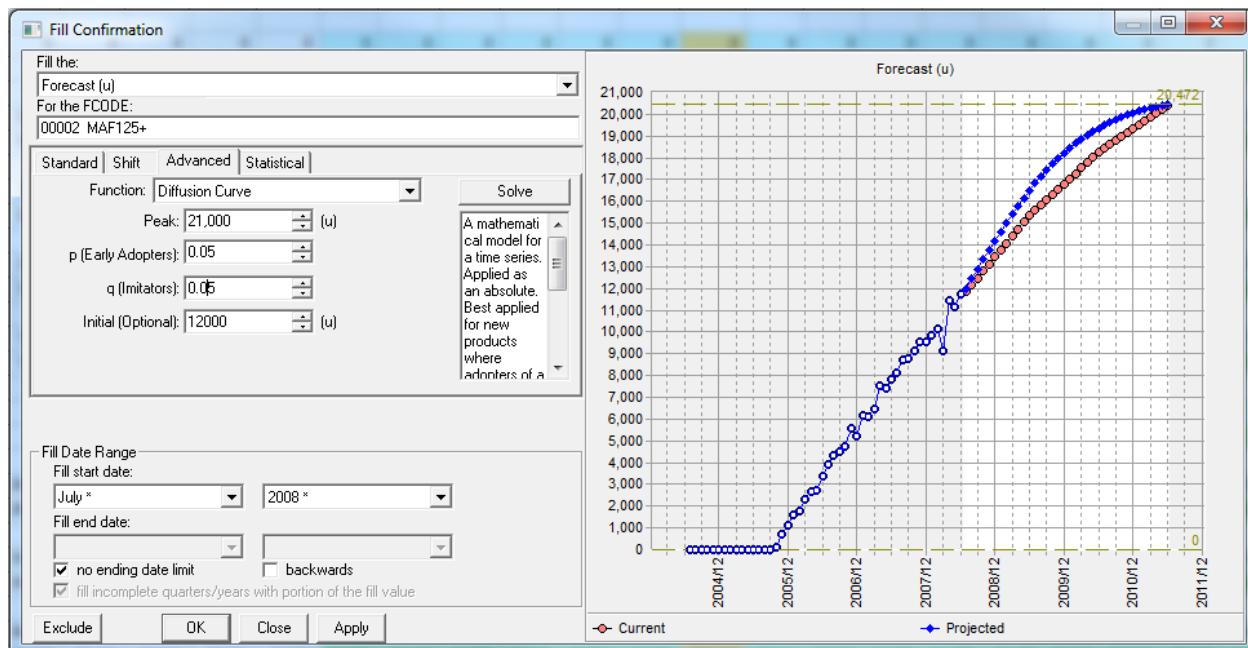

The Statistical Tab, when opened, displays the Expert System method selection and the key forecasting parameters as show in Section 9. The user may then change the method and/or its parameters, change the first observation to be used and/or the last, and generate a different statistical forecast.

7.2 Adjusting the Forecast using the Fill feature

This section will show you how to modify a forecast using the Fill feature. The Diffusion curve will be applied in order to adjust the forecast.

To add an impact to an assumption using the Fill feature, complete the following steps:

1. Double-click in the cell corresponding to the month in which you want the impact to begin.
 - The Fill Confirmation dialog box opens.



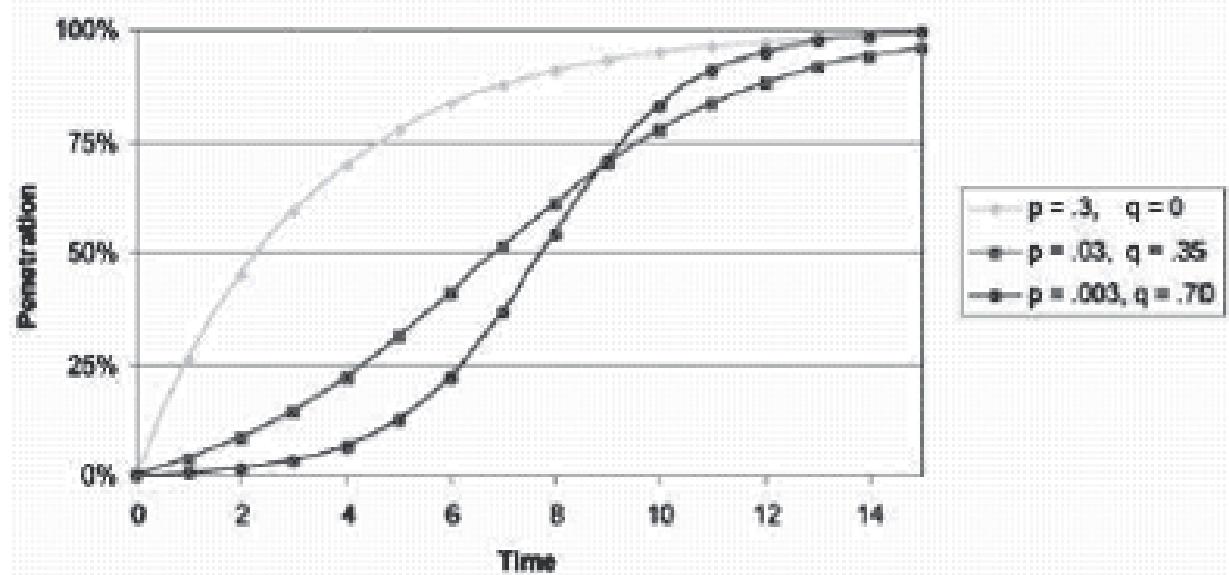
2. Click the Advanced tab and then select Diffusion in the drop-down list.
3. Enter **21000** for the **Peak** value.
 - The Projected graph adjusts automatically.
4. Enter **0.05** for the **p** value.
 - The Projected graph adjusts automatically.

5. Enter **0.05** for the **q** value.
 - The Projected graph adjusts automatically.
6. Specify a non-zero value for the **Initial Value** so that the first month of the forecast has no zeros for data. For example, specify a value of **12000**.
 - The Projected graph adjusts automatically (See graph below).

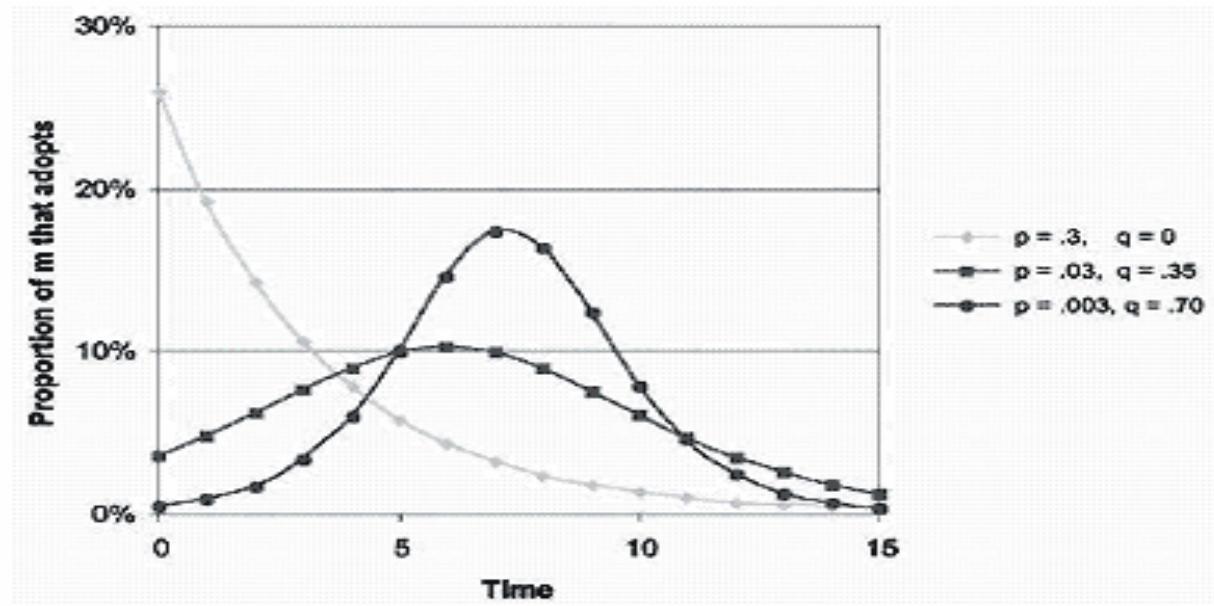
Notes:

- The higher the p value, the faster the diffusion will occur. The p value should always be greater than the q value.
- When making subsequent changes to the p and q values, only change one value at a time, view the graph and then change the other value (if necessary) to attain the preferred diffusion curve.
- The initial value represents the starting value for the Forecast. The **FUTURCAST** System interpolates the values between the Peak and the Initial Value.

7. In the **Date Range** panel, if you want to specify an ending date for the Forecast, uncheck the no ending date limit checkbox and then select a date from the Ending drop-down list; otherwise, leave the checkbox as is.
8. Click **Apply**.
9. Click **OK** to close this dialog Box.


8 Bass Diffusion Curves (overview)

8.1 Bass Diffusion Formula

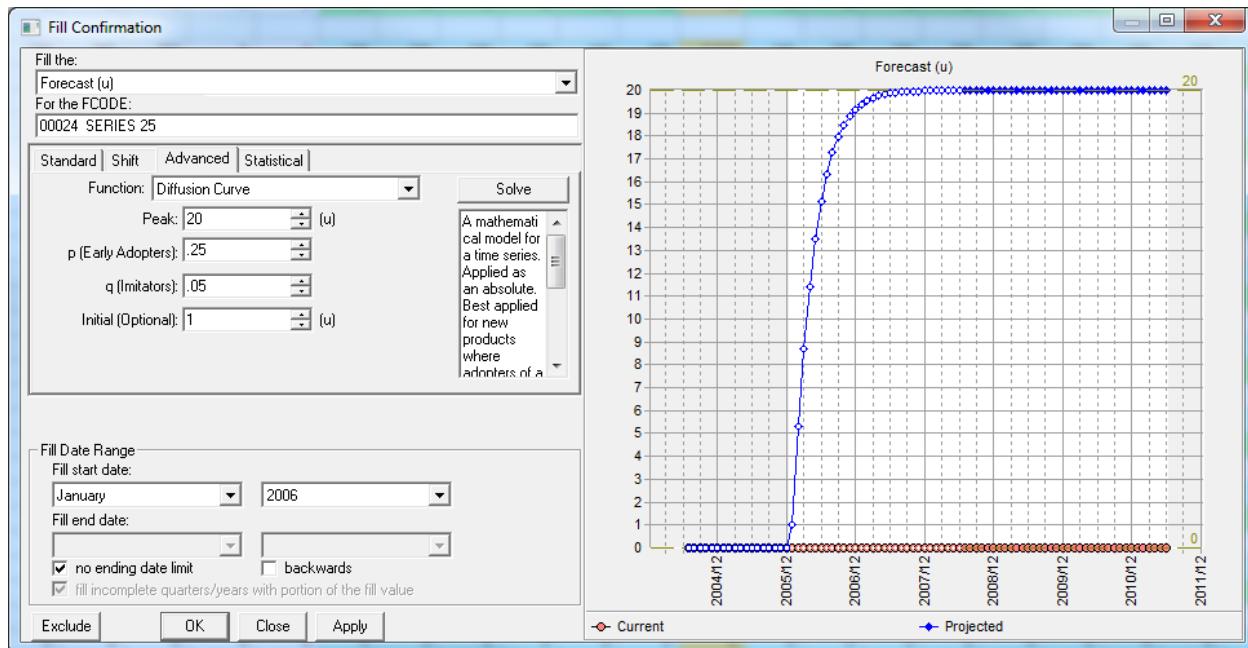

$$N_t = N_{t-1} + p(m - N_{t-1}) + q \frac{N_{t-1}}{m} (m - N_{t-1})$$

Where

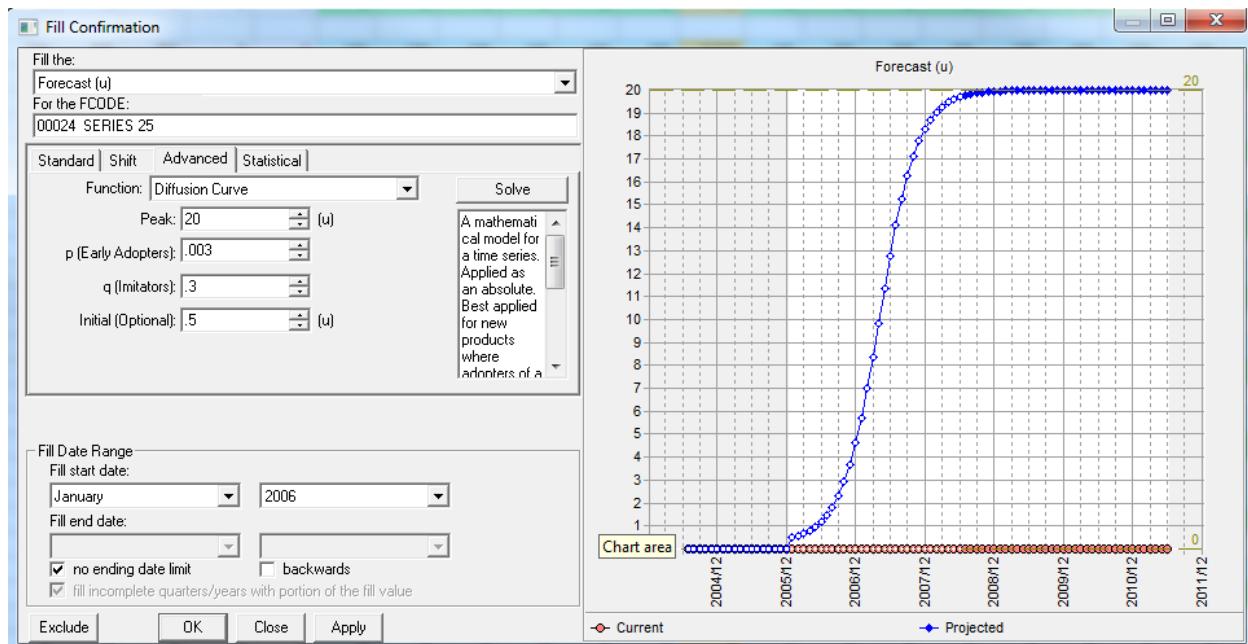
- m** is the market potential ($m > 0$) i.e. the total number of people (or %) who will eventually use the product
- p** is the coefficient of innovation ($0 < p < 1$) or the likelihood that somebody who is not yet using the product will start using it due to mass media coverage, advertising, or other external factors.
- q** is the coefficient of imitation ($0 < q < 1$) or the likelihood that somebody who is not yet using the product will start using it because of word of mouth or other influence from people already using the product.

$p > q$ Pattern for new blockbuster products
 $p < q$ Less risky innovations (me-to products)

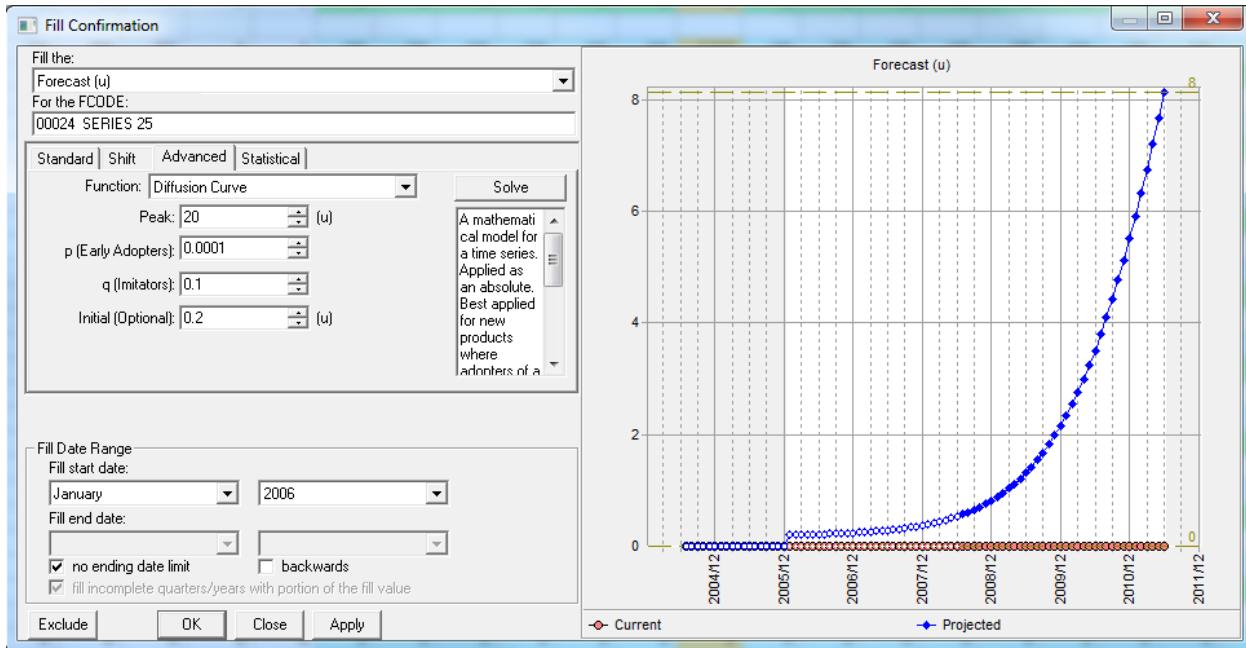
High value for p
High value for q

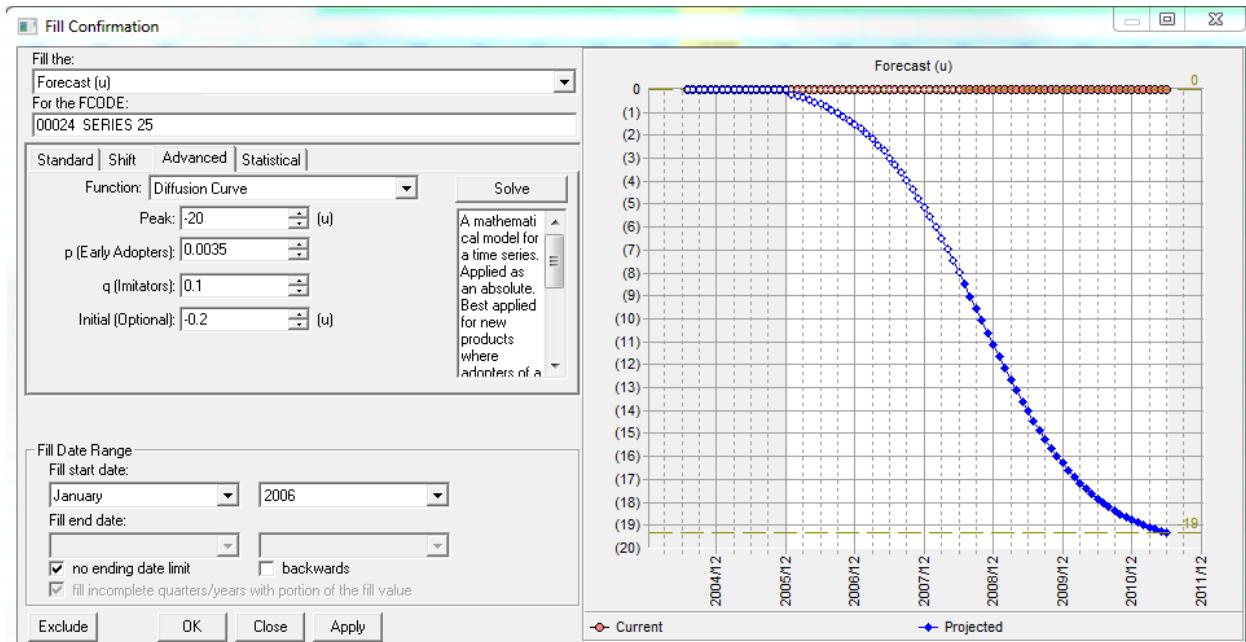

Diffusion has a quick start, but tapers off quickly
Diffusion is slow at first, but accelerates after a while

8.2 Bass Diffusion Application

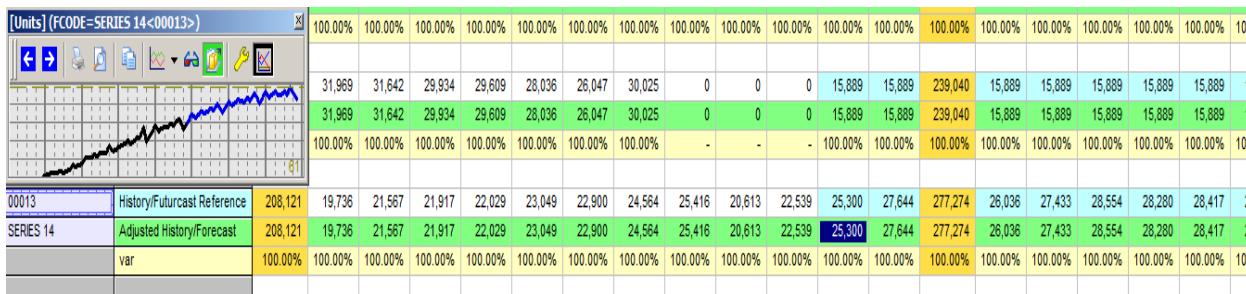

- The diffusion model may be applied to positive and negative situations (maximum loss instead of peak expressed as a negative peak with positive p and q). The result will be an exponentially declining function to the value of the maximum loss
- The preferred option for establishing a new product forecast
- The preferred option for assumptions/adjustments with single impact up-take curve values (not applicable in Stand Alone)

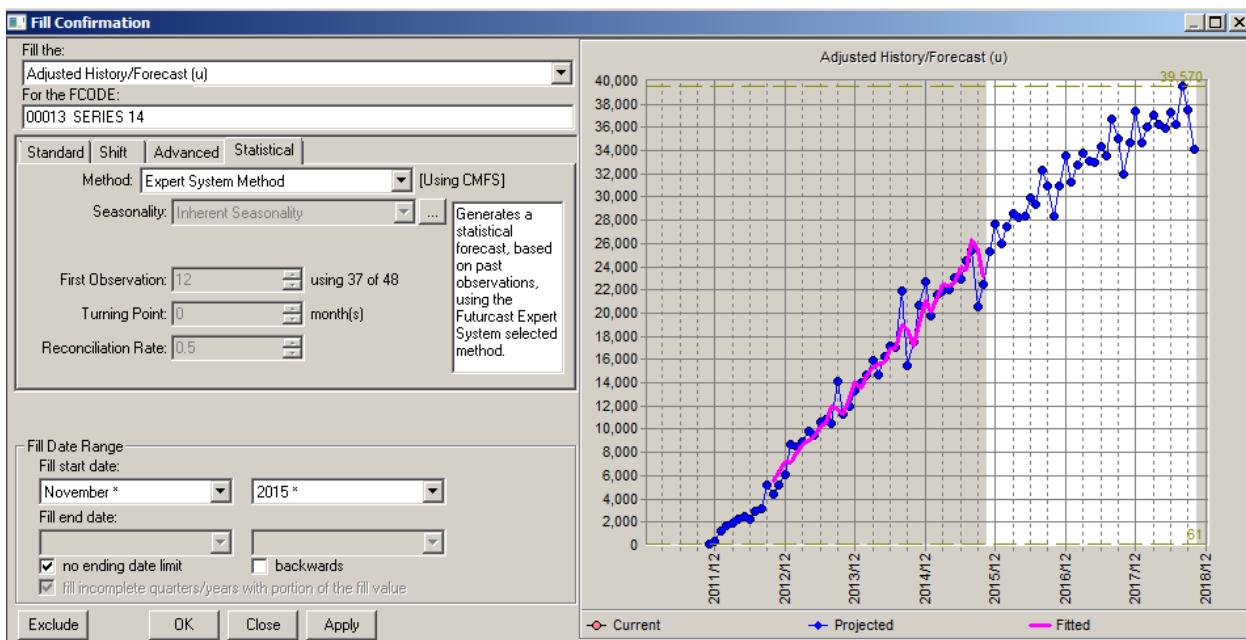
We can distinguish 4 different types of up-take curve. They are:


8.2.1 Fast up-take

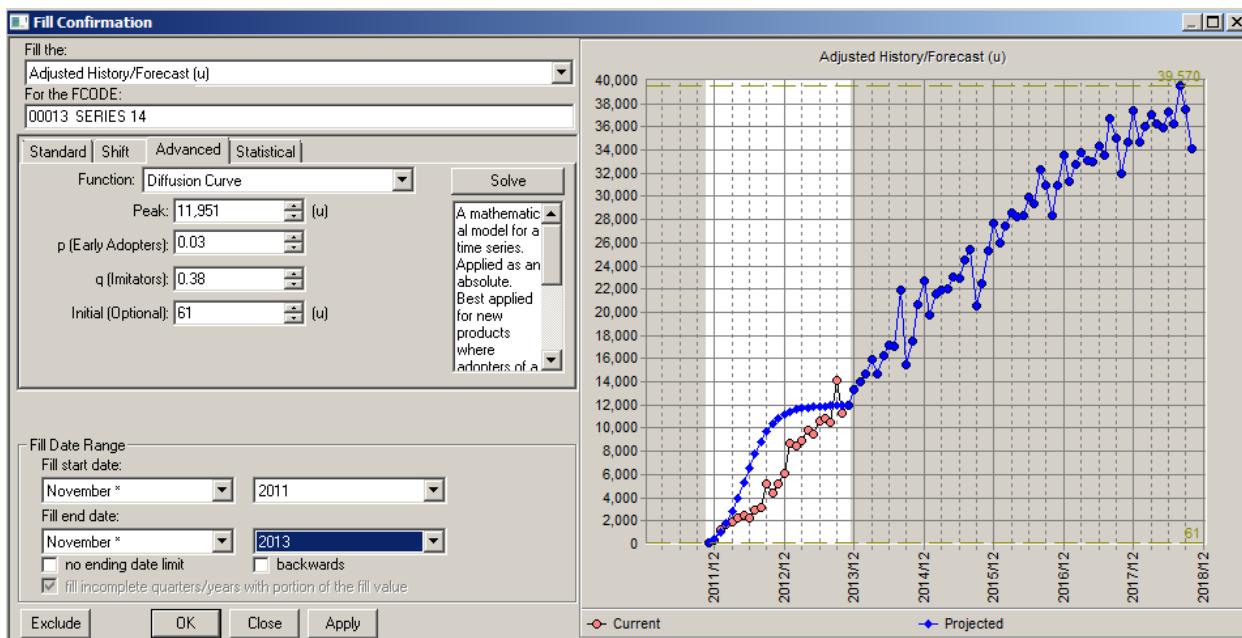

8.2.2 S-curve up-take

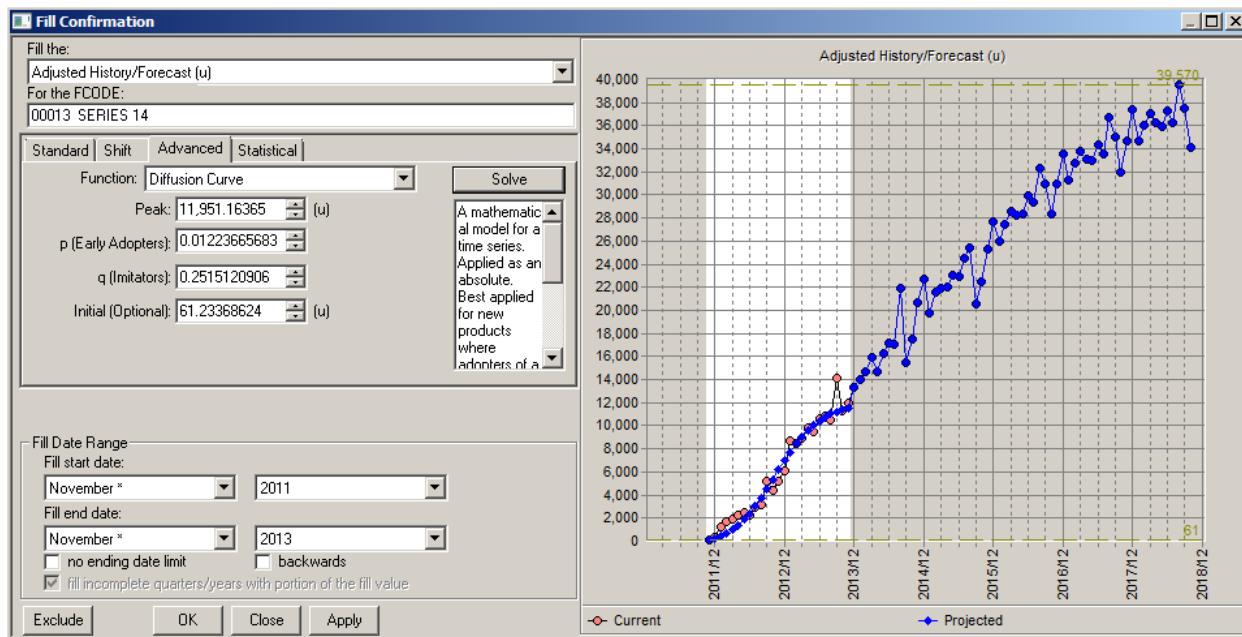
8.2.3 Exponential up-take

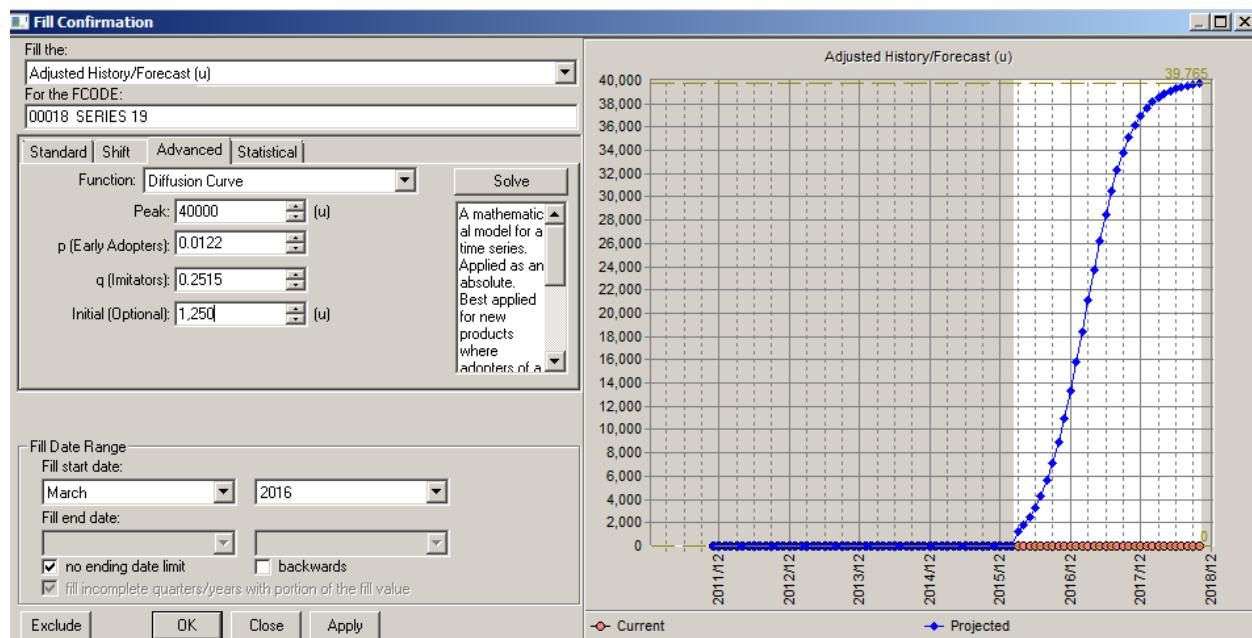

8.2.4 Negative up-take or Erosion


8.2.5 New Product or Line Extension Forecast by Analogy

A new product forecast may be established by identifying the shape of the up-take curve of an analogous product that was previously launched. This means estimating the p and q for this analogous product. **FUTURCAST Stand Alone** allows a user to compute the Best Fit Bass model on an analogous launched product.

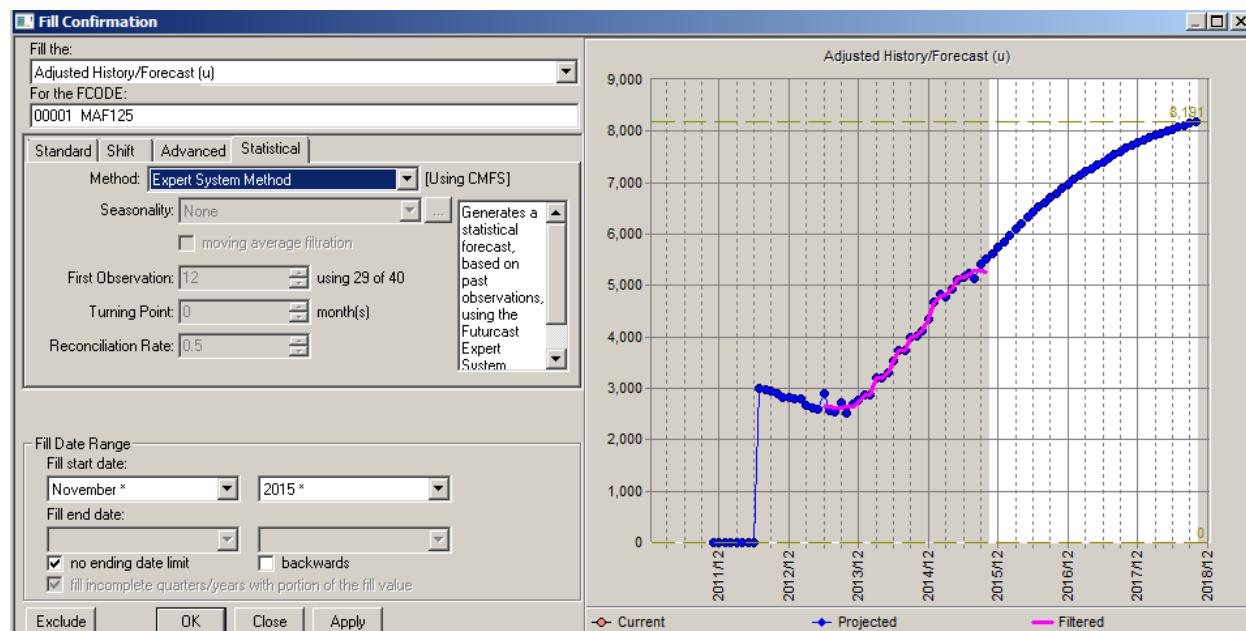

For example, such data have been entered as series 14


The fill confirmation window is opened by double clicking on the highlighted cell above.


Select as shown below **Advanced | Diffusion Curve** and set in this case the **Fill Data Range** from November 2011 to November 2013 (the historical months of interest)

Click of the **Solve** bottom and Best Fit p (.0122) and q (.2515) values are automatically estimated

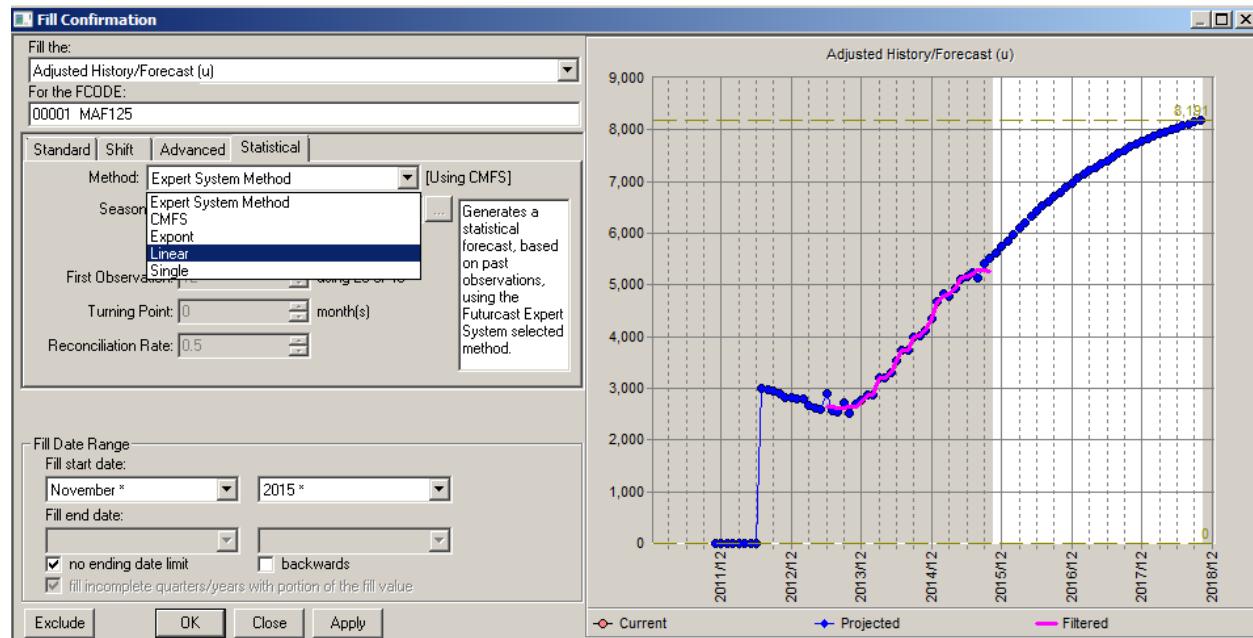
These values may then be used to establish the forecast for a product to be launched in the future given first and projected peak monthly sales. This is illustrated below for initial sales of 1250 and peak monthly sales of 40,000 and launch date of March 2016.



9 Creating a Statistical Forecast

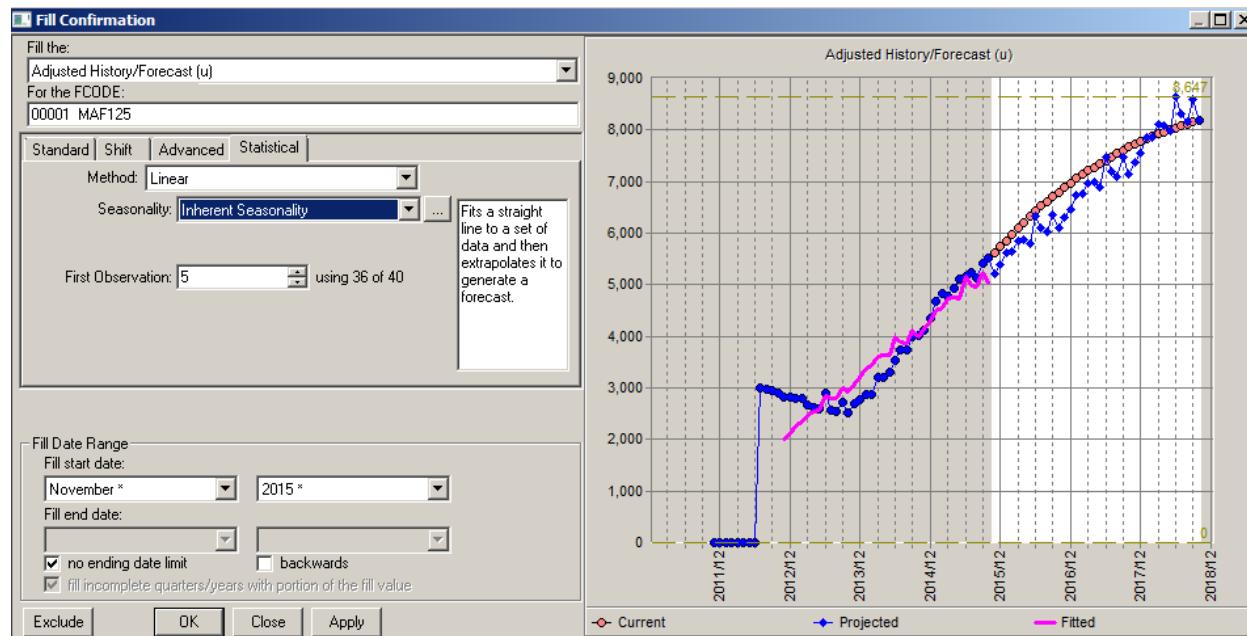
In order to generate a statistical forecast simply double click on the first forecast month (highlighted cell) of the Adjusted History / Forecast line for a given code/product.

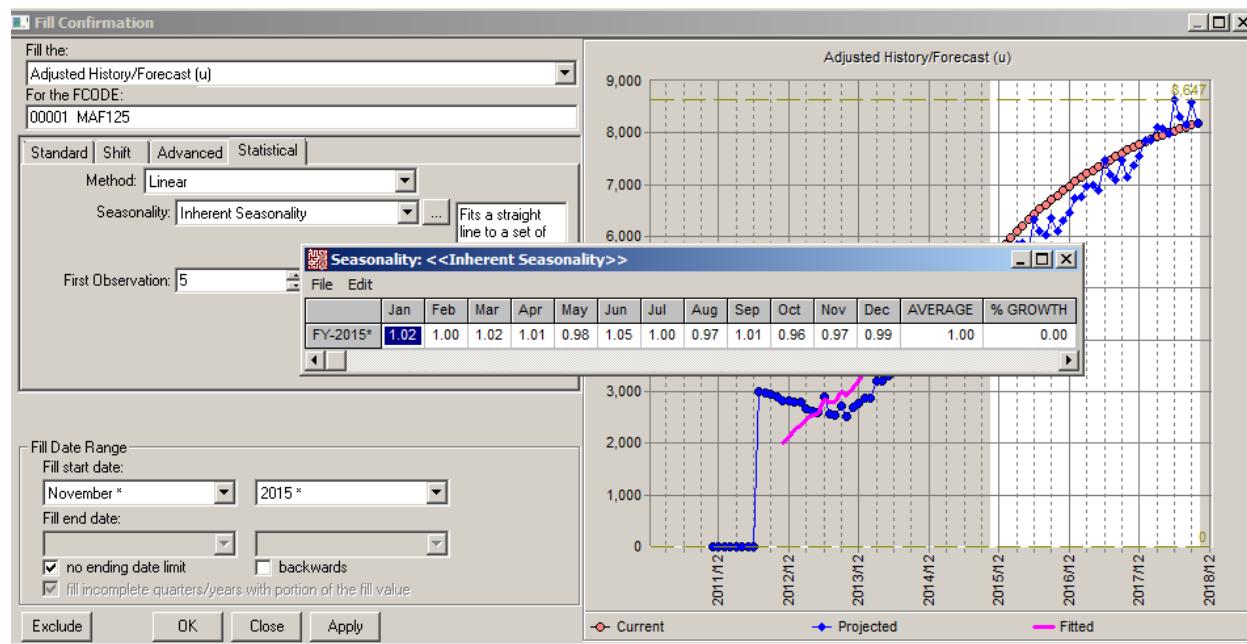
Scenario: 'Official Scenario' - by FCODE [Units in 1s]		*FY-14	*Jan-15	*Feb-15	*Mar-15	*Apr-15	*May-15	*Jun-15	*Jul-15	*Aug-15	*Sep-15	*Oct-15	Nov-15	Dec-15	*FY-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16
Futurcast Stand Alone		42,957	4,678	4,824	4,788	4,935	5,122	5,166	5,244	5,133	5,423	5,511	5,623	5,741	62,188	5,858	5,975	6,092	6,209	6,326	
00001	History/Futurcast Reference	42,957	4,678	4,824	4,788	4,935	5,122	5,166	5,244	5,133	5,423	5,511	5,623	5,741	62,188	5,858	5,975	6,092	6,209	6,326	
MAF125	Adjusted History/Forecast	42,957	4,678	4,824	4,788	4,935	5,122	5,166	5,244	5,133	5,423	5,511	5,623	5,741	62,188	5,858	5,975	6,092	6,209	6,326	
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	10
00002	History/Futurcast Reference	78,511	8,794	9,152	9,566	9,542	9,871	10,140	9,106	11,441	11,123	11,753	11,844	12,164	124,496	12,485	12,805	13,126	13,446	13,766	
MAF125+	Adjusted History/Forecast	78,511	8,794	9,152	9,566	9,542	9,871	10,140	9,106	11,441	11,123	11,753	11,844	12,164	124,496	12,485	12,805	13,126	13,446	13,766	
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	10
00003	History/Futurcast Reference	443,071	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MAF175	Adjusted History/Forecast	443,071	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	var	100.00%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
00004	History/Futurcast Reference	62,364	5,667	6,968	6,269	6,570	6,971	5,872	6,373	5,780	6,075	6,476	5,864	5,871	74,756	5,878	5,886	5,893	5,900	5,908	
NA25	Adjusted History/Forecast	62,364	5,667	6,968	6,269	6,570	6,971	5,872	6,373	5,780	6,075	6,476	5,864	5,871	74,756	5,878	5,886	5,893	5,900	5,908	
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	10
00005	History/Futurcast Reference	28,803	2,282	2,276	2,458	2,415	2,283	2,209	2,269	2,495	2,213	2,499	2,315	2,317	28,031	2,319	2,321	2,324	2,326	2,328	
NA50	Adjusted History/Forecast	28,803	2,282	2,276	2,458	2,415	2,283	2,209	2,269	2,495	2,213	2,499	2,315	2,317	28,031	2,319	2,321	2,324	2,326	2,328	
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	10
00006	History/Futurcast Reference	31,894	2,313	2,347	2,483	2,791	3,513	3,726	3,549	3,734	3,590	3,722	3,387	3,222	38,377	2,991	2,870	3,122	3,237	3,582	
NA75	Adjusted History/Forecast	31,894	2,313	2,347	2,483	2,791	3,513	3,726	3,549	3,734	3,590	3,722	3,387	3,222	38,377	2,991	2,870	3,122	3,237	3,582	
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	10
00007	History/Futurcast Reference	22,588	1,512	1,498	1,583	1,467	1,478	1,390	1,422	1,529	1,345	1,510	1,362	1,339	17,435	1,318	1,296	1,275	1,254	1,233	
NA75+	Adjusted History/Forecast	22,588	1,512	1,498	1,583	1,467	1,478	1,390	1,422	1,529	1,345	1,510	1,362	1,339	17,435	1,318	1,296	1,275	1,254	1,233	
	var	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	10
00008	History/Futurcast Reference	1,057	145	260	104	323	262	262	100	155	170	202	287	260	4,655	270	245	245	265	218	



In the Fill Confirmation window that opens click on the Statistical Tab.

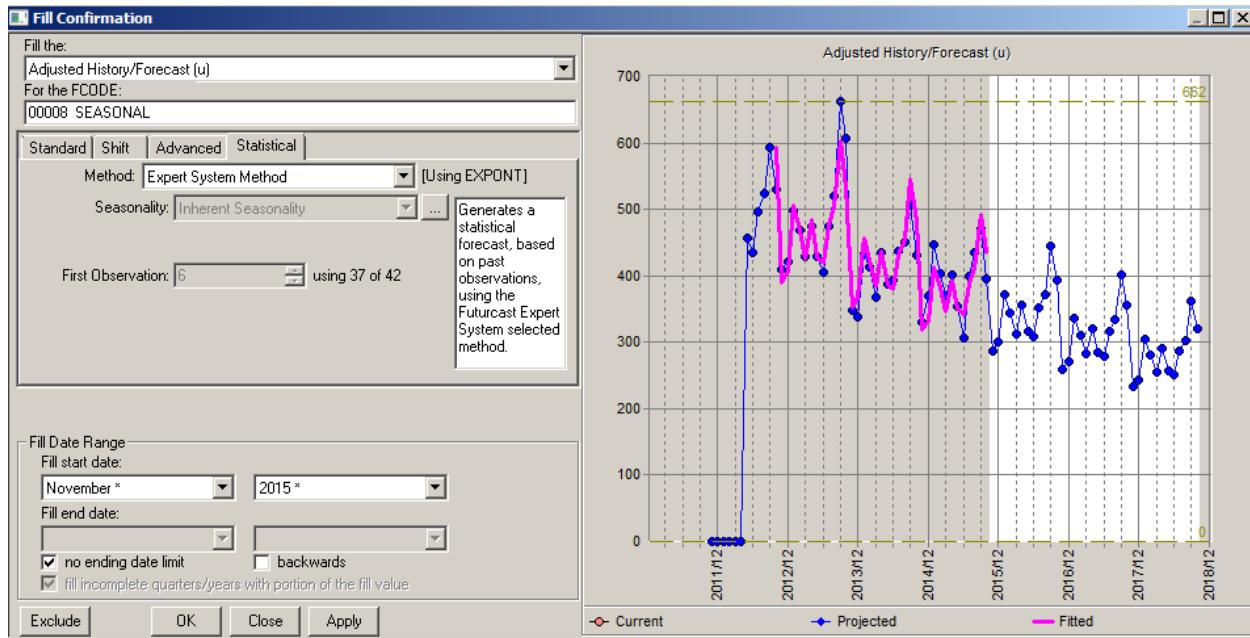
The Statistical tab displays by default the Expert System Method that would be used on the historical data (CMFS in this example). In addition to the forecast that is generated by using this method on

the automatically filtered (outliers removed) data (pink values) that are displayed in the graph, the widow indicates the first observation used (12) or the number of last months used (the 29 last months out of the 40 historical months).

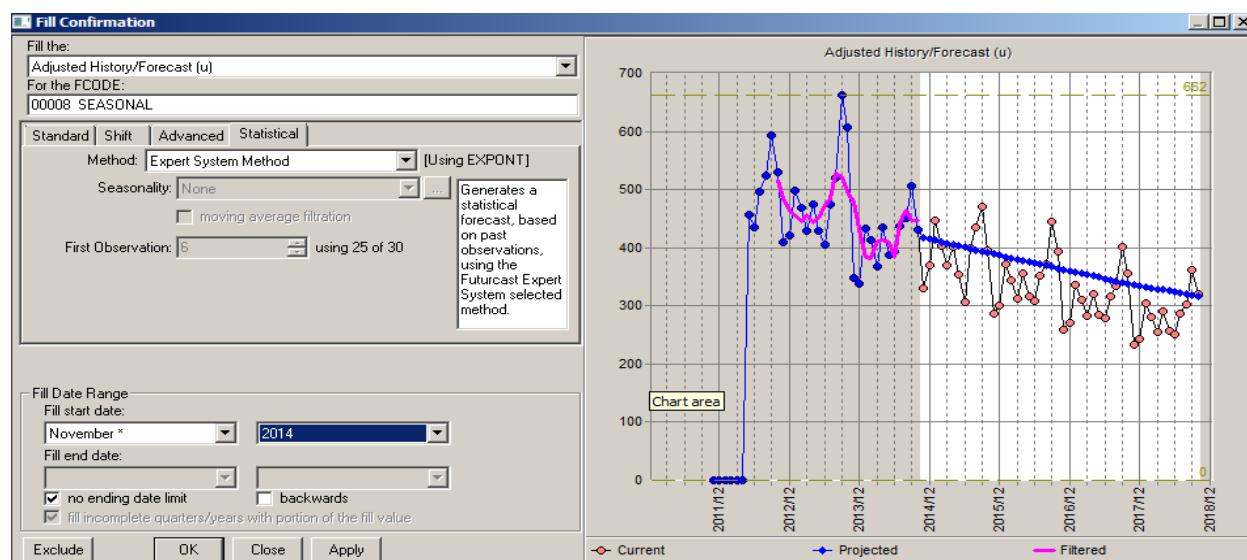

In order to create a forecast based with an alternative method, select the method of your choice (for example Linear) in the Method drop down menu


and set the first observation to be used (5 for example or extrapolate using the 36 last historical months). The forecasts (in blue) are displayed in the above Fill Confirmation window along with the

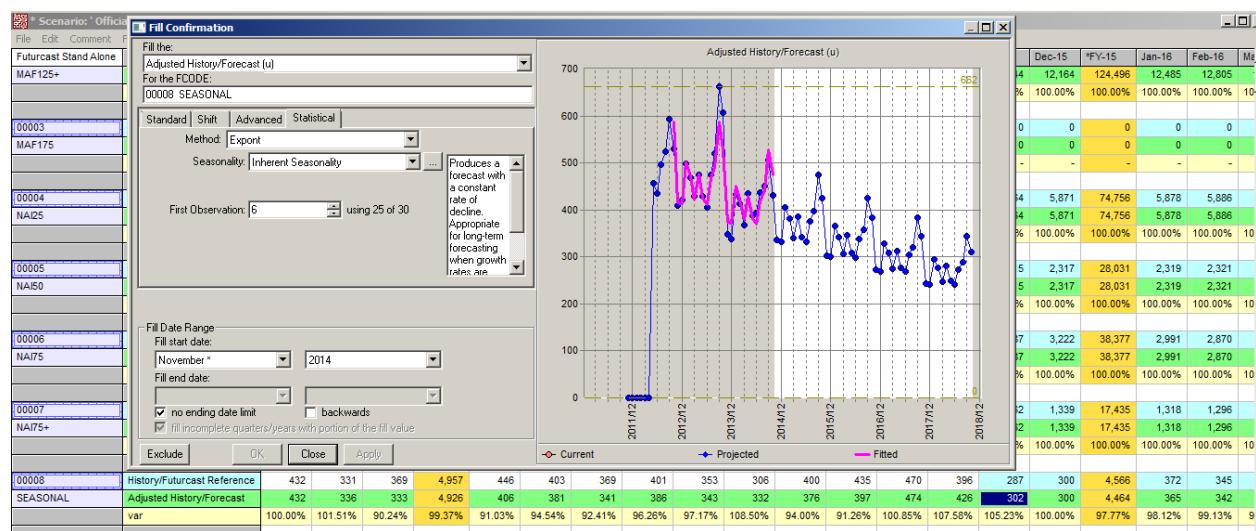
current forecasts (in orange). To replace the current forecasts by the newly generated values, press **Apply** and **OK**.


In **FUTURCAST Stand Alone** you may apply inherent seasonality while generating a statistical forecast. In our example above, we have selected **None** as seasonality (i.e. no seasonality). Select **Inherent Seasonality** in the Seasonality drop down Menu, the seasonally adjusted forecasted values will now appear. Please note the filtered data are now replaced by the historical fitted values as determined by the best fit linear model.

Press on the selection bottom next to the drop down seasonality menu bottom, and the monthly seasonal factors estimated by the Census Method (ClassD) will appear.

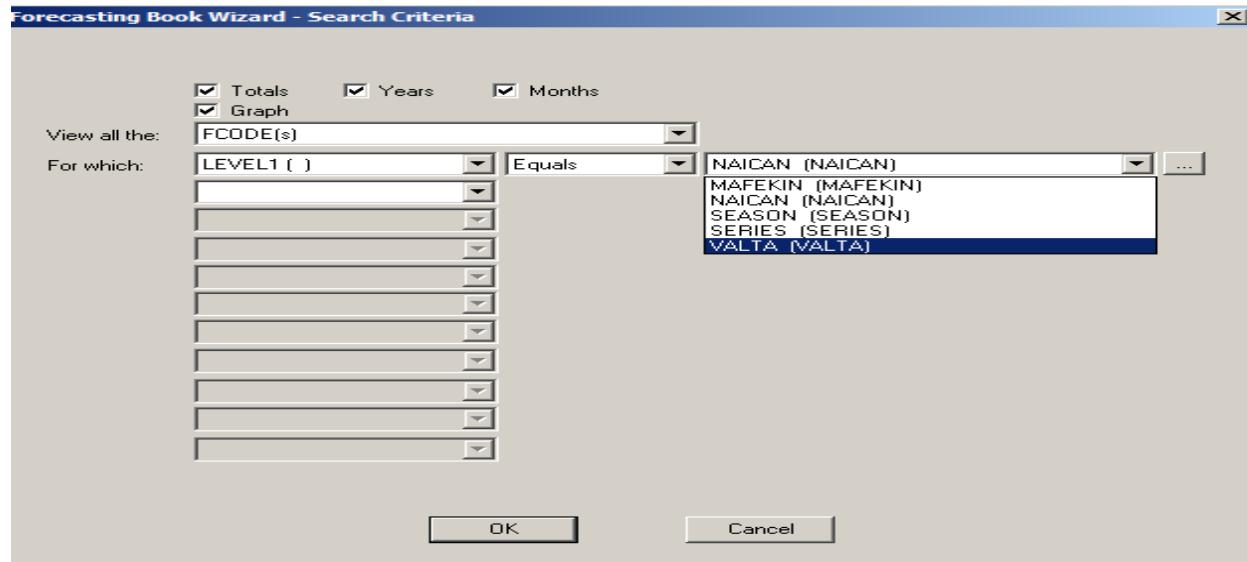


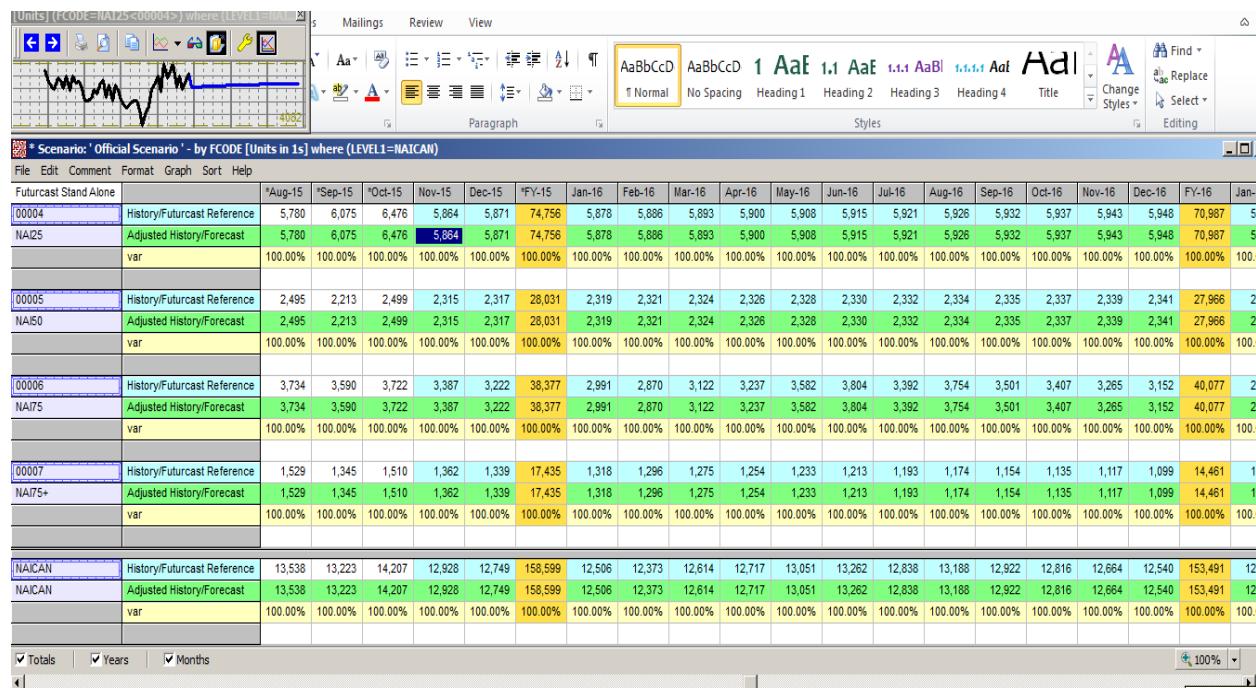
On highly seasonal series of data, the **FUTURCAST** Expert System method will automatically identify inherent seasonality as one of the selected choices as illustrated below



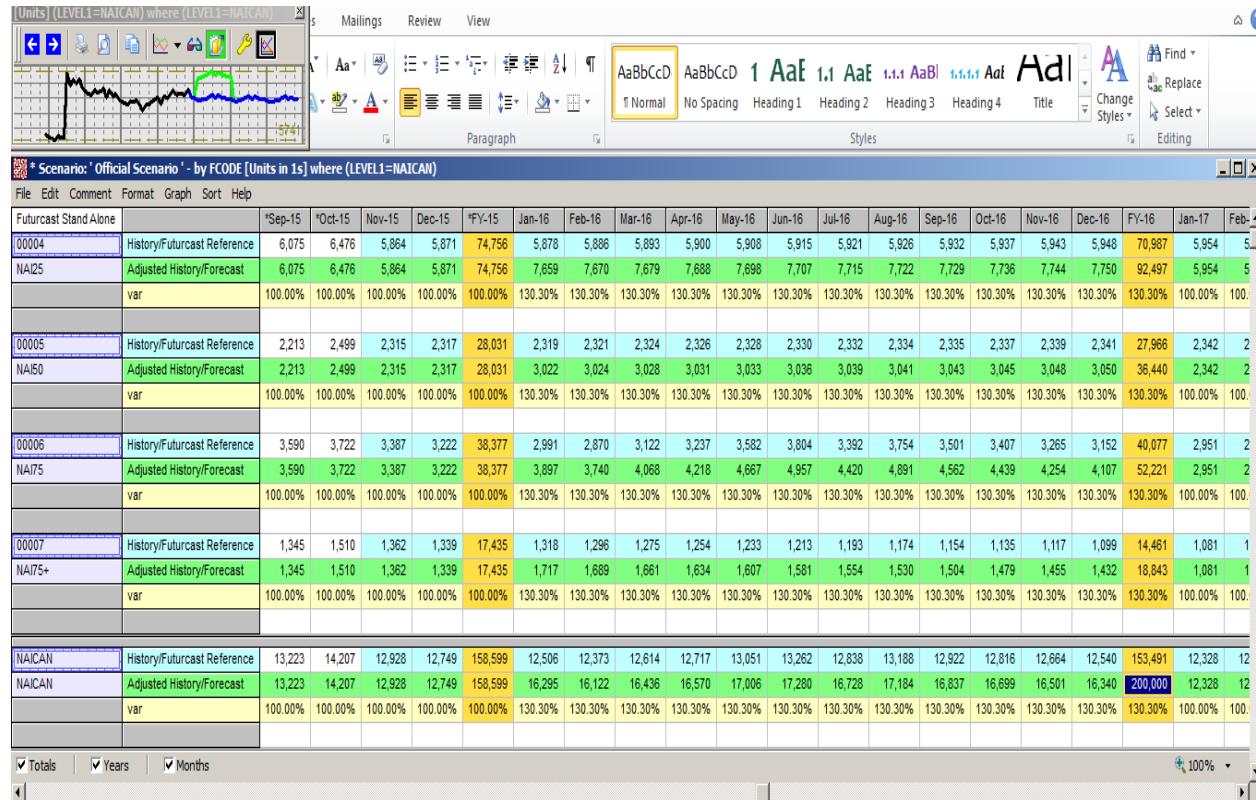
10 Evaluating a Statistical Forecast

In **FUTURCAST Stand Alone** you may evaluate the forecasts generated by using not all the historical data. For example, we would like to examine for the Seasonal series what would have been the accuracy of the forecasts for the last 12 months using the Expert System method under inherent seasonality (the forecast produced with November 2014 as the last historical month that begins in December 2014). In order to proceed with this evaluation, the user must first in the Fill Confirmation Box set in the Fill Data Range section the Fill Start Date to November 2014 (the selected ending date of the historical data).


To reproduce the forecasts under the method EXPONT with inherent seasonality, the user replaces the Method by EXPONT; thereafter, selects seasonality as inherent and 6 as first observation. Press **apply** and the variances to the actual values for the last 12 months are exhibited in the view.


11 Creating a Top-Down Forecast

In **FUTURCAST Stand Alone** you may, from the summed-up forecast at one of the 2 levels, force that summed-up forecast to meet a yearly objective and pro-rate down each month forced value to each code/product included in the selected level.


Select under file New Query and choose the level in the Forecasting Book Wizard – Search Criteria window

Select **Totals** before pressing on **OK** to generate the summed-up values at the bottom of the view

To force the forecast year 2016 of NAICAM to 200000 for example, move to the NAICOM 2016 year cell and enter 200000. All the monthly forecast for the year 2016 of all codes/products belonging to NAICAM will automatically be modified to meet this objective as is illustrated below.

12 Summary of Functionalities and Capabilities of FUTURCAST Stand Alone in Comparison with the FUTURCAST System Platforms

	Stand Alone	FUTURCAST Sales & Operations	Assumption-based	Total Market
Users				
Single	X			
Multiple remote		X	X	X
Multiple live			X	X
Database				
Excel file (2 levels)	X			
MS SQL relational (50 levels)		X		
Oracle relational (50 Levels)		X	X	X
Database Functionalities				
Adding, deleting codes	X	X	X	X
Restaging/merging codes		X	X	X
Discontinuing codes		X	X	X
Creating ABC classification		X	X	X
Managing monthly prices/discounts		X	X	X
Managing users		X	X	X
Creating/editing seasonal profiles		X	X	X
Data & Forecast Environment				
Multiple input data sources		X	X	X
Custom export to Excel	X	X	X	X
Automatic data import & export		X	X	X
ERP integration		X	X	X
Maximum forecast products/codes	30	NA	NA	NA
Maximum forecast months	24	42	72	120
Forecasting Capabilities				
Multiple methods	X	X	X	X
Expert System Method Selection	X	X	X	X
Identifying & removing outliers	X	X	X	X
Identify & apply inherent seasonality	X	X	X	X
Apply seasonal profile		X	X	X
Custom data views		X	X	X
Top/down forecasting	X	X	X	X
Top/down forecasting (excluding products)		X	X	X
Multiple graphic options	X	X	X	X
Force yearly objectives to months	X	X	X	X
Force currency objective to units		X	X	X
Kit/pallet management*		X	X	X
Weekly forecasting*		X		
Force monthly objectives to weeks*		X		
Force Rx objectives to units				X

	Stand Alone	FUTURCAST	Assumption-based	Total Market
	Stand Alone	Sales & Operations	Assumption-based	Total Market
Forecast Modifications Capabilities				
Multiple event lines & drivers		X	X	X
Document independent events			X	X
Distinguish market from product drivers				X
Insert comments to product series	X	X	X	X
Store/access multiple forecast scenarios		X	X	X
Store/access multiple market scenarios				X
Business Analysis Capabilities				
Best fit Bass diffusion model for new product forecasting	X	X	X	X
Key Performance Indicators (KPI)				
Variance analysis (at a code/level)	X	X	X	X
Weighted Accuracy (point vs cumulative)		X	X	X
Bias Analysis		X	X	X
Forecast change analysis (rolling report)		X	X	X
Business Intelligence Reporting				
Micro/macro comparison to budget		X	X	X
Identifying best/worst performers	X	X	X	X
Price/volume analysis		X	X	X
Forecast consumption analysis		X	X	X
Supply Chain Capabilities				
Safety Stock calculation		X	X	X
Auto Conversion of Sales forecast to		X	X	X
Batch replenishment values*				
Supply/demand balancing views		X	X	X
Integrated S&OP*		X	X	X
* Optional Capabilities				